Discovering Prerequisite Relationships among Knowledge Components

Carnegie Nellon University

Richard Scheines

Department of Philosophy Carnegie Mellon University scheines@cmu.edu

Elizabeth Silver

Department of Philosophy Carnegie Mellon University silver@cmu.edu

Ilya Goldin Center for Digital Data, Analytics, and Adaptive Learning Pearson ilya.goldin@pearson.com

PEARSON

Motivation:

- Want to learn which knowledge components depend on which others.
- This "prerequisite structure" would aid curriculum design.
- No data containing natural or experimental variation in topic order.
- But we do have data from tests that cover multiple topics. Goal: use test data to learn prerequisite structure.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction and Search. The MIT Press, Cambridge, MA., 2nd edition, 2000.

Analogy between prerequisites and causes:

- Prerequisite relationships induce conditional dependences and independences between variables in much the same way that causal relationships do.
- Machine learning algorithms exist for inferring causal relationships from conditional dependaences and independences in the sample.
- We can use the same algorithms to infer prerequisite

Structural search algorithm:

- PC algorithm.
- Input: a set of conditional independences over a set of variables
- Output: the Markov equivalence class of causal structures consistent with the independences.
- Structures within the equivalence class are indistinguishable without further evidence.

structure.

Measurement:

- Want to know the prerequisite relationships between Knowledge Components (KCs).
- KCs are not measured directly, so no direct measures of dependence between them.
- Need to learn dependences between latent variables to run PC.
- This is a hard problem; there is currently no general solution.

Assumption: Measurement model is known

- Key assumption: that we know the "Measurement Model" (a.k.a. the Q matrix).
- I.e. for each each test item, we know which set of KCs it measures.
- Could occur by test design, or could use an existing method for Q matrix learning.

Special case: Pure measurement models

- "Pure" items load on only one latent
- When the measurement model contains many pure items, Build Pure Clusters + MIMBuild can find the structural Markov Equivalence class *without* knowing the measurement model
- However, in education, most test items load on multiple KCs
- In simulation we varied the # of pure items in the measurement model

Parametric assumptions:

- Latents are continuous-valued
- Linear relationships between variables are linear
- Measured items are binary projections of underlying continuous quantities
- In simulation, we tested performance with both continuous items, and with binary projections

Method to learn independences among KCs:

- E.g.: Say we have four latents, L1-L4. Want to learn whether L1 _||_ L2 | L3.
- We can test this independence using a Structural Equation Model (SEM) fitter, by fitting the model on the left.
- It follows from d-separation that $\beta=0$ if and only if L1 _||_ L2 | L3.

Extensions

• Sometimes multiple models test the same

Judea Pearl. Causality: Models, Reasoning and Inference (2nd edition). Cambridge University Press, September 2009.

- SEM fitting provides consistent statistical inference for parameter values.
- In fact, for any given conditional independence, we can construct a structural model such that one edge coefficient is zero if and only if that independence holds.
- We developed a construction algorithm that produces such a structural model, and proved its consistency. The details are in the full length version of our paper.
- independence.
- Our constructor might not produce the most efficient one.
- When the Q matrix is dense or the number of KCs large, the model may be unidentifiable, so the SEM fitter will not give an answer.
- Finding the most efficient model constructor is an a potential extension.

Evaluation on simulated data:

- Simulation tests how well the method recovers the Markov equivalence class when the true model is known.
- *Structure*: We tested three different structural models. The Markov equivalence classes of these models are on the right.
- Purity: For each structural model, we created two measurement models: one with all pure items, and one with many impure items (i.e. items that load on more than one KC). The six complete SEMs are below right.
- Parameters: For each complete SEM we drew 100 random parameterizations (all variables Gaussian, all relationships linear).
- Sample size: For each parameterization, we generated two datasets: one with 1000 simulated students' scores, and one with only 150 students' scores.
- Binary v. Continuous items: All these scores were continuous-valued, but real test item scores are 0-1. We projected each dataset to a binary copy, thresholding at the mean.

Results of simulation:

- The method performed well in simulation, both for edge adjacencies and edge

(a) Model 1

(b) Model 2

(c) Model 3

(b)

(d)

(f)

orientations. The true positive rate for adjacencies and orientations in each condition is shown on the left.

• False positive rates in all conditions were low for both adjacencies (0-5%) and orientations (0-8%). Details are in the full paper.

Conclusions:

- Our method solves a novel problem: learning the dependency structure among knowledge components from test data when the measurement model contains many impure items.
- This is a common situation in educational research.
- Applications could aid curriculum design.
- Room for improvement: extensions to the model constructor could improve efficiency & identifiability.

Pure measurement model:

(a)

(c)

(e)