
Motivation:
   • Want to learn which knowledge components depend on which others. 
   • This "prerequisite structure" would aid curriculum design.
   • No data containing natural or experimental variation in topic order.
   • But we do have data from tests that cover multiple topics. 
     Goal: use test data to learn prerequisite structure.

Structural search algorithm: 
   • PC algorithm. 
   • Input: a set of  conditional independences over a set of  variables
   • Output: the Markov equivalence class of  causal structures consistent with the 
     independences. 
   • Structures within the equivalence class are indistinguishable without further evidence.  

      Measurement: 
       • Want to know the prerequisite relationships between Knowledge 

        Components (KCs).
     • KCs are not measured directly, so no direct measures of  dependence 
       between them. 
     • Need to learn dependences between latent variables to run PC. 
     • This is a hard problem; there is currently no general solution.  

Assumption: Measurement model is known
   • Key assumption: that we know the "Measurement Model" (a.k.a. the Q matrix). 
     I.e. for each each test item, we know which set of  KCs it measures. 
   • Could occur by test design, or could use an existing method for Q matrix learning.  

Method to learn independences among KCs:
   • E.g.: Say we have four latents, L1-L4. Want to learn whether L1 _||_ L2 | L3. 
   • We can test this independence using a Structural Equation Model (SEM) fitter, by fitting the 
     model on the left.
   • It follows from d-separation that β=0 if and only if L1 _||_ L2 | L3. 
     SEM fitting provides consistent statistical inference for parameter values. 
   • In fact, for any given conditional independence, we can construct a structural model such 
     that one edge coefficient is zero if  and only if  that independence holds. 
   • We developed a construction algorithm that produces such a structural model, and proved its 
     consistency. The details are in the full length version of  our paper.

Evaluation on simulated data: 
   • Simulation tests how well the method recovers the Markov equivalence class when the true 
     model is known. 
   • Structure: We tested three different structural models. The Markov equivalence 
     classes of  these models are on the right. 
   • Purity: For each structural model, we created two measurement models: one with 
     all pure items, and one with many impure items (i.e. items that load on more 
     than one KC). The six complete SEMs are below right.  
   • Parameters: For each complete SEM we drew 100 random parameterizations (all 
     variables Gaussian, all relationships linear).  
   • Sample size: For each parameterization, we generated two datasets: one with 1000 
     simulated students' scores, and one with only 150 students' scores.  
   • Binary v. Continuous items: All these scores were continuous-valued, but real test item scores 
     are 0-1. We projected each dataset to a binary copy, thresholding at the mean.  

Results of simulation: 
   • The method performed well in simulation, both for edge adjacencies and edge 
     orientations. The true positive rate for adjacencies and orientations in each condition 
     is shown on the left. 
   • False positive rates in all conditions were low for both adjacencies (0-5%) and 
     orientations (0-8%). Details are in the full paper.

Conclusions:
   • Our method solves a novel problem: learning the dependency structure 
     among knowledge components from test data when the measurement model 
     contains many impure items.
   • This is a common situation in educational research.
   • Applications could aid curriculum design.
   • Room for improvement: extensions to the model constructor could improve 
     efficiency & identifiability.
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 Special case: Pure measurement models
   • "Pure" items load on only one latent
   • When the measurement model contains many pure items, 
     Build Pure Clusters + MIMBuild can find the structural 
     Markov Equivalence class without knowing the 
     measurement model
   • However, in education, most test items load on multiple KCs 
   • In simulation we varied the # of  pure items in the 
     measurement model

between Li and Lj passes through Lc, and no variable in Lc is a
collider on any undirected path from Li to Lj that does not also
involve a non-collider prior in the order within Lc. No proper
subset of Lc d-separates Li and Lj, as there is a path from Li V

Lj for every variable V Lc. No variable in Lr is in any set
that d-separates Li and Lj, because each variable V in Lr is a
collider on an undirected path between Li and Lj involving only V.
Thus the only independence constraint entailed by G is: Li _||_ Lj |
Lc. Q.E.D.

We use this method to perform independence and conditional
independence tests as required by the PC algorithm. [3]

3. VALIDATION ON SIMULATED DATA
3.1 Methods
Our goal was to measure the method’s ability to recover
prerequisite structure when we varied (i) the structural model, (ii)
the purity of the measurement model, (iii) the sample size, and
(iv) whether the observed data was continuous or binary. In each
of these conditions we perfPureormed 100 simulations with different
parameterizations.

We used three structural models representing different ca
relations between the latent skills. Note, however, that i
impossible to recover the entire structure using constraint-ba
search; instead we can only recover the Markov equivalence c
that each structure belongs to. Therefore, the direction of so
edges cannot be learned from data. The three equivalence cla
of our structural models are shown in Figure 5, a-c. These th
figures represent the most we can hope to learn about
structural models from data; note the undirected edges.

(a) Model 1 (b)

(c) Model 3

Figure 5

(a) (b)
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Figure 6: Full models used to generate simulation data. Pairs with the same structural models but different measurement mode
(pure v. impure) are arranged next to each other. The equivalence class of the structural models for (a) and (b) is shown in Figu

(a); (c) and (d) correspond to Figure 5 (b); and (e) and (f) correspond to Figure 5 (c).

Extensions
   • Sometimes multiple models test the same 

     independence. 
• Our constructor might not produce the most             
     efficient one. 
   • When the Q matrix is dense or the number of  KCs 
     large, the model may be unidentifiable, so the SEM 
     fitter will not give an answer. 
   • Finding the most efficient model constructor is an 
     a potential extension. 
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Parametric assumptions: 
   • Latents are continuous-valued
   • Linear relationships between variables are linear
   • Measured items are binary projections of  underlying continuous 
     quantities
   • In simulation, we tested performance with both continuous 
     items, and with binary projections

Analogy between prerequisites and causes:
   • Prerequisite relationships induce conditional 
     dependences and independences between variables in 
     much the same way that causal relationships do.
   • Machine learning algorithms exist for inferring causal 
     relationships from conditional dependaences and 
     independences in the sample.
   • We can use the same algorithms to infer prerequisite 
     structure.  
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