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ABSTRACT 
Knowing the prerequisite structure among the knowledge 
components in a domain is crucial for designing instruction and 
for assessing mastery. Treating KCs as latent variables, we 
investigate how data on the items that test these skills can be used 
to discover the prerequisite structure among such skills. Our 
method assumes that we know or have discovered the Q-matrix 
(the measurement model) that connects latents representing the 
skill to items measuring the skills. By modeling the pre-requisite 
relations as a causal graph, we can then search for the causal 
structure among the latents via an extension of an algorithm 
introduced by Spirtes, Glymour, and Scheines in 2000. We 
validate the algorithm using simulated data, and discuss a 
potential application to a High School geometry assessment 
dataset. 
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1. INTRODUCTION 
Instructors, human or automated, must often choose the order in 
which to present topics to a student, and self-taught learners must 
choose for themselves the order in which to study the topics of a 
new domain. However, making these ordering choices can be less 
than straightforward. For example, should one study the 
computation of the area of a square before or after computation of 
the area of a rectangle? Perhaps the square is a simple way of 
introducing the notion of area, and this introduction facilitates 
subsequent generalization to learning the rectangle formula. Or 
perhaps the rectangle is a useful general notion, from which the 
square falls out as a special case. Thus, it may be effective to 
study either topic first, or it may be that a specific topic ordering 
is preferable. Specifically, we need to determine the prerequisite 
structure of a domain. [4,5] 

How can we choose a topic ordering? It seems obvious to ask an 
expert. But just as an instructor or researcher may hold an “expert 
blind spot” regarding which topic is more difficult for learners [6], 
we suspect that expert opinions are not a reliable way to 
determine effective topic order. Besides, there are a great many 
topics in each domain, and asking experts is prohibitively costly 
in time an effort. Instead, we turn to discovering prerequisite 
structures from data. 

Broadly, the discovery of prerequisite structures has two aspects: 
discovering the topics and ordering the topics. The former is an 
active area of research. Modern methods involve the discovery of 
the Q-matrix, which specifies the mapping between the tasks that 
students perform (i.e. items, in the language of psychometrics) 
and the skills that the tasks require. [7,8,9] But having discovered 

the Q-matrix, in what order should we present its component 
skills to the learner? This issue, ordering the topics, has been 
explored only sparsely in the literature. 

A recent contribution on topic ordering is due to researchers at 
Carnegie Learning [10], who applied a test to data on almost 
every possible instructional unit pairing in four Carnegie Learning 
math curricula. The test relied on natural variation in longitudinal 
data collected from many instructors’ use of the Cognitive Tutor 
to see if students could succeed on a unit without having earlier 
mastered another unit.  

Notably, the unit is not the smallest level of organization where 
prerequisite structure matters. “Units cover distinct mathematical 
topics; sections [within units] cover distinct sets of problems on 
that topic, with a distinct student skill model for each section.” 
[10] The ordering of sections may also have instructional 
implications, which we consider in this work.  

By contrast, our work is based not on longitudinal data, but data 
from a single assessment administered to multiple students at a 
single point in time. As a motivating case, we considered a test 
administered to approximately 120 students in a developmental 
mathematics course (a course meant to address gaps in math 
preparedness for students enrolling in college). Our research 
question was: Could we infer prerequisite structure based on 
variation in student performance on an assessment?  

Our method of prerequisite discovery applies to an assessment of 
any scope, regardless of whether it covers multiple problem-
solving strategies on a skill, or multiple skills on a single learning 
objective, or multiple objectives in a syllabus, or multiple courses 
in a multi-year curricular sequence (e.g., a standardized test).  

Our approach is based on causal structure discovery algorithms. 
Intuitively, if a student knows a prerequisite A for skill B, then A 
can help her to learn B, so A might be considered a cause of B. 
Regardless of the interpretation, prerequisite and causal 
relationships should produce similar conditional independences in 
the data. Prerequisite relationships between skills should produce 
correlations between related skills, as students who have mastered 
the prerequisites for a given skill are more likely to have mastered 
the skill itself. Furthermore, prerequisite relationships should 
produce “screening off” effects. For example: if A is a 
prerequisite for B, and B for C, but A is not directly required for 
C, then if I know a student has mastered B, learning that she has 
also mastered A will not inform me about whether she has 
mastered C. We can therefore adapt techniques originally 
designed for learning causal structures to discover prerequisite 
relationships, using data collected at a single point in time. 
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However, since the skills are not directly observable, learning the 
relationships between them is difficult. There is already a method 
(a combination of two algorithms, Build Pure Clusters (BPC)1[17] 
and MIMbuild [3, page 319]) for discovering causal structure in 
the case where the Q-matrix is unknown, but contains many pure 
items (i.e. items that load on only one skill, or latent variable). 
Unfortunately, in our target applications, most test items load on 
at least two distinct mathematical skills.  

Instead of assuming we have many pure items, we begin a longer 
investigation into pre-requisite discovery with a simplifying 
assumption that we hope to eventually relax: that the Q-matrix is 
known. We know of no current method for learning the 
prerequisite structure among skills in cases where there are very 
few pure items; so although the method we propose here is limited 
to cases where the Q-matrix is known, our method solves a novel 
problem. There are existing techniques for discovering and 
refining a Q-matrix, so there will be many cases where the Q-
matrix is known or can be estimated to some approximation.  

In the following sections, we explain the statistical model and the 
prerequisite discovery procedure. We then describe our evaluation 
of the procedure on simulated data, where the Q-matrix and the 
true prerequisite model are known. We conclude by considering 
our results in the context of educational technology. 

2. PREREQUISITE DISCOVERY  
As is conventional [4,11,12], we treat “skills/concepts” as latent, 
or unmeasured variables. Specifically, we model skills as 
continuous variables that represent the degree to which a student 
has mastered or has knowledge of a particular skill. We treat items 
as continuous variables that reflect the degree to which a student 
completed a task correctly. This idealized conception of an item is 
rarely even approximated in practice, where the measure of task 
completion is often a binary variable with values = 
correct/incorrect. A binary item can, however, be considered as a 
projection of a continuous item, and correlations among idealized 
continuous items can be estimated by computing the tetrachoric 
correlation matrix among the measured binary items.  
 

 
 (a: Measurement Model)   (b: Structural Model) 

 
(c: Full Structural Equation Model) 

Figure 1: Structural Equation Models 
 
The Q-matrix typically defines which items “load” on which 
latent skills. We can define a “measurement model” that relates 
latent skills to measured items (Fig 1-a). A prerequisite graph 
represents what skills must be mastered prior to mastering other 
                                                                 
1 Note also that BPC was written for continuous items. It would 

need to be extended to work on binary data before it could be 
applied to “correct/incorrect” test items. 

skills. If an edge is present and oriented as an arrow from latent 
L1 to latent L2, then skill L1 is a prerequisite for L2. If edges 
from two latents L1 and L2 are both causes of a third latent L3, 
then skills L1 and L2 both influence the degree to which L3 can 
be mastered. Notably, this conceptualization is distinct from 
Knowledge Space Theory [4], which represents prerequisite 
relationships among items, not skills. Instead, it is more closely 
related to the domain concept map approach [13]. 
By modeling the relations among the skills as a path analytic 
causal model among the latent variables (Fig 1-b), called the 
“structural model,” we can then combine the “measurement 
model” and the “structural model” to form a full linear structural 
equation model [1] (Figure 1 a-c). 
By assuming that the measurement model is known, we need not 
simply specify a structural model representing the prerequisite 
relations as a causal graph; we can search for it with a causal 
discovery algorithm [3,2]. The input to a causal discovery 
algorithm is typically the independence and conditional 
independence relations that hold among a set of variables, and the 
output an equivalence class of causal structures that are 
empirically indistinguishable but consistent with theoretical 
background knowledge. In our case, however, the variables of 
interest are latent/unmeasured, so we cannot use this strategy 
directly. We must find some way, as a pre-processing step, of 
computing or estimating the independence relations among the 
latent variables from observable constraints among the measured 
variables. If we can do so, then the output of a causal discovery 
algorithm applied to the latent skills will be an equivalence class 
of plausible pre-requisite relationships that explain observable 
statistical constraints that hold among the measured items.  
There are at least two strategies for finding the independence or 
conditional independence relations among the latent variables 
needed as input for a pre-requisite discovery algorithm. First, we 
might simply specify a given measurement model and estimate 
φ(L), the correlation matrix among the latent variables L. We can 
then treat the estimated latent correlation matrix φ(L) as if it were 
a sample correlation matrix among measured variables, and then 
apply a causal discovery algorithm directly to φ(L) (Figure 2).  

 
 (a: Measurement Model)  
 
 
 
 
 
 

Figure 2: Causal Discovery via Estimating φ(L) 

The discovery algorithm would use φ(L) to make decisions about 
whether independence and conditional independence constraints 
over L hold in the population from which φ(L) was drawn. The 
problem with this strategy is that φ(L) is not a sample covariance 
matrix, it is an estimate of a sample covariance matrix. If the 
sample size for the measured items is N, and the sample 
covariance matrix among the measured items is S(X), then a 
statistical inference on whether an independence relation holds in 

S(X) 
sample covariance 

matrix over X 

Causal Discovery 
Algorithm 

Equivalence Class 
of causal structures 

over L 

Estimator 
 

φ(L) 
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the population from which S is drawn is routine, and has a known 
dependence on the sample size N.2  

Performing a similar inference from φ(L) is not routine, as the 
sample size that should be used is not N, as the covariances in 
φ(L) are already estimated from S(X) rather than sampled from 
the same population as S. We have no statistical theory about how 
to correct for N when using an estimate of φ(L), and the 
correction is not simple as it depends in a non-trivial way on the 
measurement model, the number of items relative to the number 
of skills, and other factors. This lack of statistical theory 
notwithstanding, the strategy is promising and we intend to 
investigate its reliability in future work.  
A more theoretically satisfactory strategy is as follows: for every 
conditional independence test among the latents, construct a 
structural model such that a single coefficient in a full structural 
equation model vanishes if and only if that particular 
independence relation among the latent variables holds. If the 
remainder of the structural model imposes no additional 
constraints on the measured variables, and the measurement 
model is known to be correct, then the only thing we need to put 
to a test is whether the edge coefficient in question is in fact 0. In 
a structural equation model, the confidence interval around a 
single parameter estimate is conditional on the other parts of the 
model being correctly specified. In this case, we hypothesize that 
the measurement model is correctly specified, and construct the 
structural model so that no constraints are entailed except the 
constraint that would hold were the edge in question to be absent.  
It turns out that we can fix the measurement model as given, and 
construct a structural model for each test of independence we 
desire. For example, consider the edge labelled β in the structural 
models shown in Figure 3 (a) and (b). 

 
 (a)   (b) 

Figure 3: Structural Models to test independence relations 

In Figure 3 (a), β = 0 if and only if L1 _||_ L3 | L2.3 In Figure 3 
(b), β = 0 if and only if L2 _||_ L4 | L1, L3. If we attach 
measurement models to these structural models, and estimate the 
resulting full structural equation models, then the Fisher 
Information matrix of the coefficient estimates provides 
asymptotically correct standard errors (Bollen, 89). We can thus 
use an asymptotically correct statistical inference on β as a 
surrogate for an asymptotically correct test of L1 _||_ L3 | L2 in 
Figure 3 (a), and as an asymptotically correct test of L2 _||_ L4 | 
L1, L3. in Figure 3 (b), with no sample size correction needed.  
The disadvantage of this strategy is that one must know, ahead of 
time, how to construct a structural model to correctly perform any 
independence test, and then execute a series of such tests by 

                                                                 
2 By assuming that X is multivariate normal, we can use tests for 

vanishing correlations and partial correlations as tests for 
independence and conditional independence.  

3 The notation A _||_ B | C means that A is probabilistically 
independent of B given C, i.e., P(A | C) = P(A | B,C), for all 
values a of A, b of B, and c of C. 

estimating a series of different structural equation models. Both of 
these problems can be solved.  
If the original set of latent variables is L, and the independence 
relationship under test is: Li _||_ Lj | Lc, where Li, Lj, Lc and the 
remaining latents Lr exhaust and partition L, then the structural 
model to test : Li _||_ Lj | Lc can be built as follows: 4  
Algorithm CITSEMB  
(Conditional Independence Test SEM Builder): 

1) Form an arbitrary ordering over the variables in Lc, and 
an arbitrary ordering over the variables in Lr, such that 
every variable in Lc is prior in the order to every 
variable in Lr. Add an edge in the structural model from 
every variable in Lc U Lr to every later variable in Lc U 
Lr.  

2) Add an edge from Li to every variable in Lc U Lr. 
3) Add an edge from every variable in Lc to Lj 
4) Add an edge from Lj to every variable in Lr 
5) Add an edge from Li  Lj, with coefficient b.  

 
For example, if L = { Li, Lj, Lk, Ll, Lm}, and Lc = {Lk, Ll}, and   
Lr = {Lm}, then the structural model to construct in order to test  
Li _||_ Lj | Lk, Ll is shown in Fig. 4. 
 

 
Figure 4 

If, when a measurement model is attached and a full structural 
equation model estimated, the null hypothesis that β = 0 
corresponds to the hypothesis: Li _||_ Lj | Lk, Ll, and no other 
independence constraint among the latent variables is entailed by 
the model.  
Claim: the structural equation model constructed as specified in 
section 2 entails Li _||_ Lj | Lc and no other constraints, just in case 
β =0.  
Proof. There are no constraints among the variables in Lc U Lr, as 
the variables in this set are connected with a complete graph. 
Consider the graph G that results from removing the edge Li  Lj 
(equivalently, set β = 0). In G, Li _||_ Lj | Lc, as every trek 

                                                                 
4 This is an extension of a similar method suggested in [3, chapter 

12]. In that algorithm, the measurement model was assumed to 
be correct, and also “pure,” i.e., no cross factor loadings or 
correlated errors. As a result of it being “pure”, the structural 
model could be formed using the subset of L involving only Li, 
Lj, and Lc, with the latent variables in Lr and their 
accompanying items left out of the model. In our context, the 
measurement model will never be pure – by instructional 
design. As a result, we must include all the variables in L in the 
technique we discuss.  

β 
β 

β 
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between Li and Lj passes through Lc, and no variable in Lc is a 
collider on any undirected path from Li to Lj that does not also 
involve a non-collider prior in the order within Lc. No proper 
subset of Lc d-separates Li and Lj, as there is a path from Li  V 
 Lj for every variable V ∈ Lc. No variable in Lr is in any set 
that d-separates Li and Lj, because each variable V in Lr is a 
collider on an undirected path between Li and Lj involving only V. 
Thus the only independence constraint entailed by G is: Li _||_ Lj | 
Lc. Q.E.D. 
We use this method to perform independence and conditional 
independence tests as required by the PC algorithm. [3] 
 

3. VALIDATION ON SIMULATED DATA 
3.1 Methods 
Our goal was to measure the method’s ability to recover 
prerequisite structure when we varied (i) the structural model, (ii) 
the purity of the measurement model, (iii) the sample size, and 
(iv) whether the observed data was continuous or binary. In each 
of these conditions we performed 100 simulations with different 
parameterizations. 

We used three structural models representing different causal 
relations between the latent skills. Note, however, that it is 
impossible to recover the entire structure using constraint-based 
search; instead we can only recover the Markov equivalence class 
that each structure belongs to. Therefore, the direction of some 
edges cannot be learned from data. The three equivalence classes 
of our structural models are shown in Figure 5, a-c. These three 
figures represent the most we can hope to learn about the 
structural models from data; note the undirected edges. 

         
    (a) Model 1     (b) Model 2 
 

         
         (c) Model 3 

Figure 5: Equivalence classes of generating structural models
 

(a)               (b)  

(c)             (d)  

 (e)                   (f)            
Figure 6: Full models used to generate simulation data. Pairs with the same structural models but different measurement models 

(pure v. impure) are arranged next to each other. The equivalence class of the structural models for (a) and (b) is shown in Figure 5 
(a); (c) and (d) correspond to Figure 5 (b); and (e) and (f) correspond to Figure 5 (c). 
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We simulated data from these three different structural models, 
using either a pure or an impure measurement model, for a total of 
six different generating models (Figure 6, a-f). The simulated data 
represent student responses to items that load on the skills. 
For each generating model, we instantiated the model 100 times, 
each with new parameters chosen to be positive (so that skills 
would have a positive effect on item responses) and large enough 
to care about. Coefficient were drawn uniformly from [.5, 1.5], 
covariances drawn from [.2, .3], and error variances drawn from 
[1.0, 3.0]. For each instantiation we simulated two datasets, one of 
size n=150 and one with n=1000. This gave us 1200 unique 
datasets. 
For each dataset, we created a binary copy, to represent the 
conventional case that student responses are scored as binary 
(correct / incorrect) rather than continuously. For each 
measurement j of each observed variable Xi, the binary projection 
of that measurement, Xij

Bin, was set to zero if Xij < mean(Xi), and 1 
otherwise, to avoid choosing multiple arbitrary cutoff points. We 
then used the function hetcor() in the R package Polycor to 
estimate the correlation matrix for each truncated dataset. 
We used the lavaan R package to estimate all structural 
equation models.[15] We created a simple function, semTest(), 
which takes (a) a measurement model, (b) a dataset (or covariance 
matrix & sample size), (c) a pair of variables Li and Lj, and (d) a 
conditioning set Lc. semTest then builds the correct lavaan-
syntax model to test Li _||_ Lj | Lc (according to the CITSEMB 
algorithm described above), estimates the model using the sem() 
function in the lavaan package, and returns the p-value of the 
critical edge. 
We used semTest() as the independence test in the PC 
algorithm, as implemented in the R package pcalg. [16] For 
each of the 1200 continuous datasets, and each of the 1200 
estimated covariance matrices of the binary datasets, we ran the 
PC algorithm (using an alpha value of 0.02) and produced an 
equivalence class for the structural model in which we assumed 
no additional latent confounding, called a pattern [14].  
We then scored each graph on the following metrics:  

1. True positive adjacencies or adjacency recall (# correct 
adjacencies in output / # adjacencies in true graph),  

2. False positive adjacencies (# incorrect adjacencies in 
output / # gaps in true graph),  

3. True adjacency discovery rate or adjacency precision (# 
correct adjacencies in output / # adjacencies in output) 

4. True positive orientations or orientation recall (# 
correctly oriented edges in output / # orientable edges in 
true equivalence class). Defined to be 1 if none of the 
edges in the true equivalence class are orientable, as is 
the case for Model 1 (see Figure 5 (a)). 

5. False positive orientations (# incorrectly oriented edges 
in output / # edges in true equivalence class) There are 
two ways to incorrectly orient an edge: reverse the true 
orientation, or orient an edge that is undirected in the 
true equivalence class.  

6. True orientation discovery rate or orientation precision 
(# correctly oriented edges in output / # oriented edges 
in output). Defined to be 1 if none of the edges in the 
output are oriented. 

7. False negative orientation rate (# incorrectly unoriented 
edges in output / # oriented edges in true equivalence 
class).  

  

3.2 Results 
Our results show that the algorithm performs well for discovering 
adjacencies (Figure 7). Even in the most difficult (and most 
realistic) case, where the sample size is 150, the measurement 
model is impure, and the data is binary, we still recover 74% of 
adjacencies for Model 1, 76% for Model 3, and 89.5% for Model 
2.  

 
Figure 7: True positive adjacency rates (i.e. # correct 
adjacencies in output / # adjacencies in true graph), ± two 
standard errors. Grouped by the three structural models (see 
Figure 5), sample size of 150 vs. 1000, pure vs. impure 
measurement models, and continuous v. binary data. 
The false positive rate for adjacencies (Figure 8) is extremely low 
in all conditions. 

 
Figure 8: False positive adjacency rates (i.e. # incorrect 
adjacencies in output / # gaps in true graph), ± two standard 
errors. Grouped by the three structural models (see Figure 5), 
sample size of 150 vs. 1000, pure vs. impure measurement 
models, and continuous v. binary data. 
The true discovery rate for adjacencies, or precision, is near 
perfect in all conditions (Figure 9).  
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Figure 9: True Discovery Rates for adjacencies (precision) (i.e. 
# correct adjacencies in output / # adjacencies in output), ± 
two standard errors. Grouped by the three structural models 
(see Figure 5), sample size of 150 vs. 1000, pure vs. impure 
measurement models, and continuous v. binary data. 
The algorithm does not perform quite as well for edge 
orientations, for two reasons. First, an edge can only be oriented if 
the adjacency it orients has been discovered. Second, adjacency 
errors in nearby edges ramify to produce additional orientation 
errors, because the orientation decisions involve interaction 
between nearby edges. As a result, if the algorithm makes 
adjacency errors, these will typically produce orientation errors. 
So in this sense orientation is harder than adjacency. 
The true positive orientation rate (recall) is shown in Figure 10; 
the worst score is 64.5% (for Model 3, with binary data, an 
impure measurement model and sample of 150). Note however 
that many of these errors are caused by missing adjacencies (it is 
impossible to orient an edge that is not discovered). Compare with 
the False Negative Rate (Figure 13), which is relatively low, 
indicating that of the orientable adjacencies that were recovered, 
most of them were correctly oriented. 

 
Figure 10 True positive orientation rates (orientation recall) (# 
correctly oriented edges in output / # orientable edges in true 
equivalence class; defined to be 1 if none of the edges in the 
true equivalence class are orientable, which is true for Model 
1, so Model 1 is not shown.) 

 
Figure 11: False positive orientation rates (i.e. # incorrectly 
oriented edges in output / # edges in true equivalence class). 
There are two ways to incorrectly orient an edge: reverse the 
true orientation, or orient an edge that is undirected in the 
true equivalence class. 
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The algorithm performs very well with regard to false positives 
(Figure 11) and precision (Figure 12), and quite well for false 
negatives (Figure 13). 

 
Figure 12: True discovery orientation rate or precision (i.e. # 
correctly oriented edges in output / # oriented edges in 
output). Model 1 is omitted because there are no orientable 
edges in the equivalence class, so an oriented edge in the 
output is guaranteed to be incorrect, making the false positive 
rate a better measure of performance. 
 

 
Figure 13: False negative orientation rate (# incorrectly 
unoriented edges in output / # oriented edges in true 
equivalence class). Model 1 is omitted because there are no 
oriented edges in the true equivalence class. 
 

4. CONCLUSIONS 
The prerequisite graph is an important pedagogical artifact in 
itself, because we can use it to examine the structure of a domain, 
and it is furthermore a critical element of adaptive learning 
environments, where it can be used to create personalized and 
efficient learning trajectories for students. We expect that our 

algorithm can be used to discover fine-grained prerequisite 
structures to make student learning more efficient and more 
effective. There are multiple ways that this may be the case. For 
instance, an accurate prerequisite graph can be used to eliminate 
implausible curricular sequences. It can also be used as a basis for 
interleaving and spacing strategies to enable robust learning. 

One contribution of this work is that we can infer prerequisite 
structure without relying on variation in topic ordering in existing 
data. While sometimes data with varied topic orderings are 
naturally available [10], in general, collecting such data requires 
experimentation. Specifically, it requires offering alternative topic 
sequences to different students, which necessarily means that 
some students are exposed to a suboptimal curricular sequence. 
By inferring prerequisite structure based on a single assessment, 
we avoid having to waste student time and effort. 

Moreover, by positing an entire structural equation model relating 
all skills and all items, the algorithm developed here is an advance 
on testing pairwise prerequisite relationships, as in [10].  

Evaluation of prerequisite structure is non-trivial, as [10] note. 
There are no established evaluation procedures, metrics, or 
standard data sets. Evaluation on simulated data provides an 
important step forward, because simulated data allow us to 
evaluate performance objectively. In other words, with simulated 
data we know the true state of the world, and we can measure 
whether our models are able to recover the true state.  

Our algorithm is the only method currently available for inferring 
latent structure when the measurement model contains few pure 
items (i.e. items that load on only one latent). It performed well in 
our simulation. 

There are several limitations, however: first, the simulation may 
fail to represent the variability in real-world data. Second, the 
simulation may fail to represent the complexity or form of latent 
skill structures in the real world. We assume an underlying linear 
model, which fails to capture the fact that prerequisite 
relationships are often interactive – learning more of one 
prerequisite cannot compensate for the lack of another. We also 
assume no confounding by latent variables other than our 
knowledge components. We would like to check how robust our 
method is to violations of these assumptions. Lastly, the method 
as it stands is unable to handle cases where there are few items per 
latent skill, because in those cases the structural equation models 
we use for testing conditional independences are under-identified. 
We intend to tweak the CITSEMB algorithm to handle these 
underidentified cases.  

While our evaluation covered a range of plausible variable values 
and considered a number of generating use cases, we intend to 
extend this work with an evaluation on real-world data in future 
work. We also intend to extend the work by investigating the 
robustness of the procedure to errors in the Q-matrix specified.   It 
is worth pointing out, however, that Q-matrix discovery 
algorithms could be combined with prerequisite discovery 
algorithms of the type we present. 
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