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Abstract. Clinical trials are often complicated by both nonadherence and unblinding.
This makes it difficult to accomplish the main purpose of the trial: discover the causal
effect of taking the treatment. I develop static and time-series graphical representations
of the causal structure of trials, in order to represent how nonadherence interacts with
unblinding to cause bias. I briefly describe some ways trials could be designed in order
to avoid, or at least better evaluate the risk of such bias. I then compare intent-to-
treat, per protocol, and instrumental variables analyses in terms of the causal assump-
tions they make regarding non-adherence, unblinding and dropout. I argue that all of
them are unbiased when the blind is successful, but all of them may be biased when
the blind fails (though not all to the same degree). I describe how Judea Pearl’s ‘front
door’ method is unbiased in the presence of unblinding, although it makes other strong
unverifiable assumptions. I then consider the possible effects of measurement error on
the front door method, per protocol, and instrumental variables. I show that using the
front door method, the causal effect of treatment is identifiable in linear models, if we
make two measurements of each error-prone variable. Unfortunately per protocol analyses
are incompatible with linear models, implying that either other identifying parametric as-
sumptions must be found, or that adherence should be measured as accurately as possible,
using electronic monitors. Lastly, I argue that the scientific and regulatory communities’
preferences for intention-to-treat analyses over per protocol is based on misinterpretation
of historical results from the Coronary Drug Project, and a degree of skepticism that is
not applied consistently to all sources of bias.
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Part 1. Introduction

The Evidence-Based Medicine (EBM) movement holds randomised controlled double-
blind trials to be the gold standard for evaluating new medical treatments. [5, 15] When
EBM proponents justify this standard, they gloss over the problems that arise in real trials,
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and cite inferential properties that can only be said to hold of ideal trials. [2] An ideal trial
would look something like this:

The Ideal Trial : A sample of participants is randomly assigned to two groups, A and
B. One of the two groups is given the new treatment, and the other is given the control
(either a placebo or an alternative, better-understood treatment). Neither the patients,
nor the doctors treating them, know who is getting which treatment. The participants all
take the treatment assigned to them, and at the end of the trial their medical outcomes
are recorded and compared (again by physicians unaware of who was taking what). Any
difference between the two groups’ outcomes is then attributed to the difference between
the treatments.

In the abstract, the logic of the Ideal Trial is unassailable, and if that were all there were
to it, medical research would be considerably easier. The following examples illustrate how
actual trials deviate from the ideal, and each one illustrates a different facet of the problem
– and some surprising opportunities.

1. Motivating examples

1.1. Example 1: The WHI study of Calcium and Vitamin D for Osteoporosis.
In 2004, the New England Journal of Medicine published the results of the Women’s Health
Initiative (WHI) trial of Calcium & Vitamin D for Osteoporosis. [25] The aim of the trial
was to show that a cheap, over-the-counter supplement could reduce the number of fractures
in postmenopausal women; as the treatment offered no large profits to pharmaceutical
companies, the trial was funded by the NIH. It included 36,262 women, and follow-up ran
for an average of 7 years – a monumental achievement.

The results of the trial, however, were less impressive. Here is the Conclusion section
from the abstract, the “bottom line”:

Among healthy postmenopausal women, calcium with vitamin D supple-
mentation resulted in a small but significant improvement in hip bone den-
sity, did not significantly reduce hip fracture, and increased the risk of
kidney stones.

That sounds definitive. If a trial of thirty-six thousand women could not detect a statisti-
cally significant effect, it is probably not clinically significant either.

However, the discussion section of the paper offered several plausible alternative expla-
nations for the null result. Most women in the trial were already getting adequate dietary
calcium, and only a few were deficient in Vitamin D at baseline, so the supplement could
not have a strong beneficial effect in these women (although it might give them kidney
stones). Furthermore, the dose of vitamin D (400 IU) had been shown, in other studies, to
have only a weak effect; only doses of 600 IU or more had shown strong effects on fracture
risk. Also, fractures were rare: fewer than half the predicted number of fractures actually
occurred, drastically reducing the study’s statistical power.

Lastly: over seven years of follow-up, many patients stopped taking the pills. By the end
of the trial, 24% of participants admitted that they had completely stopped adhering, and
only 59% of participants were still taking 80% or more of their medication (as measured
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by returned pill count, which tends to overestimate actual adherence). As US Surgeon
General C.E. Koop put it, “Drugs don’t work in patients who don’t take them”. In the
WHI the converse appeared to be true: calcium and vitamin D did work in women who
took them. In the Reply to Comments, the authors themselves wrote:

Nonetheless, we believe that the trial results provide several indications
that calcium intake does reduce the risk of hip fracture. Calcium and vi-
tamin D supplementation reduced the risk of hip fracture by 29 percent
among women with an adherence of 80 percent or more, 21 percent among
those 60 years of age or older at enrollment, and 30 percent among those
not taking other calcium supplements during the trial (all 95 percent con-
fidence intervals for the correspond- ing hazard ratios exclude 1). In fact,
we believe that these data support current recommendations for adequate
calcium intake.

It’s curious that the subgroup results were not included in the abstract, whereas the
intent-to-treat1 null result served as the main analysis, despite good reasons to think that
it underestimated the effect of calcium and vitamin D. Subgroup results are often thought
to be susceptible to bias, but in this case the main analysis itself was suspect. The question
of this thesis is, “how should we analyse randomised controlled trials?” That also means,
“if we do more than one analysis, how should we emphasise the different results, and which
should we take to be primary?” Which analyses are taken to be more important on the
grounds that they are more reliable?

1.2. Example 2: Blind v. Unblinded Assessments of Multiple Sclerosis. Nose-
worthy et al. [35] reported the results of a Canadian cooperative trial of cyclophosphamide,
prednisone, and plasma exchange for multiple sclerosis. But this was not just a trial of the
treatment; it was also a trial of the methodology.

Most randomised controlled trials are “double-blind”, meaning that neither the patients,
nor the doctors assessing their outcomes, know who is in which group. The Canadian trial’s
outcome measure was score on the Expanded Disability Status Scale (EDSS), which must
be assessed by a neurologist. Noseworthy et al. tested the effect of blinding the assessors.
At each checkup, every patient was assessed by two neurologists: one blind to the patient’s
assignment, and one unblinded.

In fact, the unblinded neurologists gave the patients in the treatment arm better scores
on the EDSS than the patients in the placebo arm. The blinded physicians gave placebo
and treatment patients identical scores – if anything, they slightly favoured the placebo
group.2 This example demonstrates that the results of trials can be biased if outcome

1See Section 11.1 for a description of intent-to-treat analyses.
2The study also measured whether participants and physicians could guess the treatment allocation. In

fact, participants could guess their allocation significantly better than chance, but the blinded physicians
were unable to do so. Interestingly, despite being able to guess better than chance, participant guess was
not associated with outcome. This indicates that unblinded participants are not guaranteed to unblind
their assessors, although of course it is not a proof that they can never unblind their assessors.
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assessors are unblinded. The ‘beneficial effect’ reported in the unblinded arm had nothing
to do with the treatment administered, only the assessors’ expectations of a benefit.

1.3. Example 3: Dose Timing for HAART. Despite causing problems by reducing
study power, non-adherence in the trial can also offer opportunities that are rarely ex-
ploited. The third example is not from a RCT at all, but it illustrates the potential
advantages to pursuing these methods in a trial context.

Liu et al. [32] report the results of a longitudinal study of Highly Active Anti-Retroviral
Therapy (HAART) for HIV. In particular, the researchers attempted to characterise the
effect of dose-timing errors (DTEs) on viral load, and on viral resistance to HAART.
The rationale: HAART has a short half-life, so variation in dose timing will cause serum
concentration of HAART to drop repeatedly into a dangerous zone where it is insufficient
to suppress viral replication, but sufficient to exert a strong selective effect on the virus. [52]
Thus, more so than with other medications, we would expect DTEs to be associated with
outcomes.

This is exactly what Liu et al. found. Even after controlling for percentage of doses
taken, dose timing errors were significantly predictive of both viral load and viral resistance.
Note that these DTEs would never be picked up with traditional “pill count” measures of
adherence; they are only detectable using electronic monitoring devices, which record when
the patient opens the drug bottle.

HAART is not the only treatment for which particular patterns of adherence have specific
effects. Any drug to which people can become tolerant, any drug with first-dose effects,
and any drug with rebound effects will have a particular adherence-related profile; and the
profile will change with different formulations of the drug that have different half lives or
absorption rates. Thus, large clinical trials with nonadherence represent an opportunity to
learn these adherence-related effect profiles early in drug development, and provide advice
to patients on what aspects of adherence are most important, what to do if they miss a
dose, etc. However, this opportunity can only be exploited if adherence is measured in
sufficient detail, which means using electronic monitoring devices. [50, 51]

2. Questions trials should answer

It should now be clear, given the three examples, that there are several possible research
questions we might expect clinical trials to answer. The FDA is particularly interested in
one question, for approving new drugs:

(1) Superiority (or equivalence): Is the treatment under study superior to a placebo
(or at least as good as the current standard of care)?

For simplicity, I will limit my discussion to placebo-controlled trials.
Besides the superiority question, policy-makers, doctors and patients are often interested

in how much better the treatment is. We also need to specify who it is better for. For

There are numerous other examples of participants becoming unblinded, [10,40] but I know of no other
experimental tests of how blinding affects the conclusion of a trial.
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example, if we were considering withdrawing a treatment that was already in widespread
use, we would want to know:

(2) Effect of Treatment on the Treated (ETT): Among the sub-population of people
who are already taking the treatment, how different would their outcomes have
been if they had all taken the placebo instead of the treatment?

The people currently taking the treatment may have had unusually good experiences with
it, so the effect it has on them might be very different from the average effect it has on the
whole population.

However, if we are considering introducing a new drug, we do not know in advance who
will start taking the treatment. In that case we want to know the effect of the drug on the
entire clinical population:

(3) Average Causal Effect (ACE): What would the average difference in outcomes be
if we gave everyone in the clinical population the treatment, as opposed to giving
them all the placebo?

Because new drug development is common whereas removing drugs from the market is
rare, I will focus on the ACE instead of the ETT throughout the rest of this thesis.

So far I have not distinguished clearly between being prescribed treatment and actually
taking it. Policy-makers are interested in the effect of prescribing the treatment to people,
and so are doctors, but patients want to know what will happen if they take the medicine.
So there is another pair of distinct questions:

(4) (Average Causal) Allocation Effect: What would the average difference in outcomes
be if we allocated everyone in the clinical population to the treatment group, as
opposed to allocating them all to the placebo group?

The effect of being prescribed treatment (averaged over people who adhere perfectly, and
people who make mistakes or fail to adhere at all) is sometimes called “use-effectiveness”
or “population efficacy”.

However: When estimating the allocation effect, we want to rule out the reporting bias
demonstrated by Noseworthy et al. [35]. Noseworthy found that allocating patients to the
active treatment improved their outcomes if they were assessed by an unblinded neurologist,
but not if they were assessed by a blinded neurologist (see Section 1.2). Allocation had
an effect, but not because the treatment was effective. Thus, even when we are estimating
the effect of allocation on outcome, we don’t want the total effect – we just want to learn
what portion of the effect of allocation on outcome is mediated by the treatment (see also
Section 2.1). So (4) should really be:

(4b) Allocation Effect Mediated by Treatment: Of the average difference in outcomes
caused by allocating people to treatment, versus allocating them to placebo, what
portion of that difference is mediated by them receiving treatment?
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This is a composition of the causal effect of allocation on treatment, and the causal effect
of treatment on outcomes.3

Patients, however, want to know the effect of simply taking treatment – that is to say,
the direct effect of treatment on outcome:

(5) Treatment effect: What is the average difference in outcomes we would see if we
made people take the treatment, versus making them take placebo?

The effect of taking the treatment exactly as prescribed, compared to taking the placebo
exactly as prescribed, is sometimes called “method-effectiveness”.

Patients who frequently make mistakes also want to know the effects of those mistakes.
There are several different ways patients can adhere imperfectly: missing doses, taking
“drug holidays” (i.e. 3+ days of missed doses), making dose timing errors, discontinuing
treatment too early, or overdosing, to name a few.

For a given type of non-adherence – say, a missed dose – there are then two contrast
cases. My outcome given I missed a dose could be compared to the outcome I’d have had if
I’d taken that dose. This kind of contrast tells us about potentially dangerous consequences
of particular patterns of non-adherence. It puts an upper bound on what we can achieve
if we intervene on adherence – for example, with a public health education campaign –
among patients who are taking the treatment.

(6a) Adherence effect (a): What is the average difference in outcomes we would see if
we made people miss one dose of treatment, versus making them take that dose?

Alternatively, my outcome after missing a dose could be compared to the outcome I’d have
had if I had missed doses of the placebo. This would tell us whether the treatment is
helpful even given imperfect adherence.

(6b) Adherence effect (b): What is the average difference in outcomes we would see if
we made people miss one dose of treatment, versus missing one dose of placebo?

Clearly, contrast (a) and contrast (b) can be applied to the various different forms of
non-adherence.

On the face of it, it looks like non-adherence within the trial would make it hard to
estimate the Treatment Effect, but would actually help to estimate the various Adherence
Effects, and the Allocation Effect. This is because the clinical population will include some
non-adherent patients, just like the trial population.

However, trialists often want an affirmative answer to the superiority question – “is this
treatment better than a placebo?” – in order to get regulatory approval. (The exceptions
are trials like the WHI, which are not funded by pharmaceutical companies.) As a result,

3We can express this counterfactual contrast precisely using the do-calculus:∑
out

∑
t

out× P (Outcome = out|do(Treatment = t))P (Treatment = t|do(Allocation = 1))

−
∑
out

∑
t

out× P (Outcome = out|do(Treatment = t))P (Treatment = t|do(Allocation = 0))
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trialists sometimes exclude patients thought to be poor adherers, for example by imple-
menting pre-trial “run-in” procedures. [38] Excluding some non-adherers from the trial, or
strongly encouraging adherence, means that the effect of treatment (as measured by an
intention-to-treat analysis) will be less diluted by non-adherence. As a result it will be
closer to the true Treatment Effect – but further from the true Allocation Effect, which is
relevant to policymakers.

To learn the Allocation Effect we need an additional assumption: that rates of adherence
in the trial represent rates of adherence in the clinical population. This assumption is often
violated because trialists want a positive superiority result. This trade-off illustrates some
of the tension between the different goals of trials – tension between the “explanatory” and
“pragmatic” approaches to clinical trials. [42]

When I discuss different methods for analyzing the results of trials, I will point out
which question(s) each method is supposed to answer. Ideally, for any given trial, we could
perform several different analyses and answer all our questions. However, the design of
each trial will still favor some questions over others.

2.1. “Open” (unblinded) trials and the placebo effect. One might say I’ve ignored
an important question: What is the effect of taking a treatment, and knowing you’re
taking it? Call this the Open Label Effect. It is what we intend to measure when we run
an unblinded or “open label” trial – a trial in which all participants know what treatment
they have been assigned to.4 The Open Label Effect combines the physiological effects of the
treatment with the “placebo effect”, the psychological effects of knowing that you’re taking
treatment. There is evidence that psychological effects can have important physiological
effects, [26]5 so the Open Label Effect would seem to be worth studying, as it most closely
resembles what will happen in clinical practice, where no-one is blinded.

On the other hand, several arguments are traditionally made in favour of blinding, and
these all count against investigating the open label effect. The claim is that the effect
measured in open label trials may be biased. It may be influenced by factors other than
true effects of the treatment.

There are two general categories of biases that can arise from unblinding: reporting
biases and differential treatment biases. These effects arise from unblinding of up to six
different groups of people: participants, healthcare providers, data collectors, outcome
assessors, data analysts, and the data safety and monitoring committee. [8]

2.1.1. Reporting biases. These arise from saliency/expectation effects and from attribution
effects. Patients and outcome assessors are more likely to notice the effects they expect
to see, and to overlook the unexpected. This would be especially true of outcomes that
are not always reported (e.g. “other” category adverse effects) or those that are subjective
(difficult differential diagnoses, pain, etc) compared to non-subjective outcomes that are

4Sometimes this is the only kind of trial we can run, because the treatment cannot be concealed. Major
surgery, exercise, diet regimens, and use of eye-patches for amblyopia (‘lazy eye’) are all examples of
treatments that are impossible to blind.

5Although the placebo effect alone may be impossible to estimate independently of various confounding
factors. [28]
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always reported (e.g. death). [11, 41] Patients and outcome assessors are also more likely
to attribute what they notice to known possible causes. For example, even if two patients
notice the same variation in their condition – say a headache – the patient who knows she
is taking an active treatment is more likely to attribute the headache to the treatment than
the patient who knows she is taking the placebo. There is no point reporting the headache
to trial staff if she knows it cannot be an adverse effect. [28]

2.1.2. Differential treatment biases. These occur when knowledge of assignment influences
what happens to the patient. Patients may decide to stop adhering to a placebo who would
have adhered to active treatment (or vice versa), or they may drop out differentially, or use
different co-interventions. Healthcare providers may recommend different co-treatments,
differentially adjust the dosage, or encourage different behaviour (adherence, dropout, etc)
in each group. They may differentially withdraw patients from the trial, or simply com-
municate different attitudes towards each of the two groups. [41] Data analysts may decide
which analysis to do, and which participants to exclude from the analysis, based on their
assignment. Trial staff may spend more energy pursuing participants lost to follow-up from
one of the two groups. [11]

Thus, there are several reasons to think that an effect we are interested in – that of
taking the treatment while knowing that you are taking it – may be contaminated by
reporting biases, and by differential treatment of the two groups. The degree to which the
trial’s results differ from the effect seen in clinical practice depends on the strength of these
effects.

This strength is difficult to estimate, and is likely to depend on the particular treatment
and outcome in question. A meta-analysis by Schultz et al. (1995) found that trials de-
scribed as double-blind reported effects 17% smaller than trials not so described. However,
the trial reports did not indicate whether the blind was held successfully, and some of
the trials may have been blinded despite not being described as such. [40] Furthermore,
that meta-analysis took pairs of trials from a variety of different sub-fields of medicine
(all within the Cochrane Pregnancy and Childbirth database), and the particular fields
included may have influenced the result. Nevertheless, Schultz et al.’s result is reason to
think these biases are worth worrying about. Although we may be interested in estimating
the effect of knowing that you are taking the treatment, we are more motivated to prevent
these biases from influencing our estimates of efficacy. 6

6There are also reasons why we might not bother to learn the open-label effect at all, if we have already
learned the pure treatment effect. Firstly, the placebo response component is likely to be unstable. Two
hundred years ago, if a patient was given leeches to cure a fever, they probably experienced a positive
psychological effect, because leeches were thought to be a useful remedy. Today, any patient given leeches
for a fever should experience alarm and distrust. As medical knowledge changes, the placebo response will
change, whereas the physiological effects of the treatment should remain relatively stable. In fact, given
that the treatment’s effects are unknown during the trial, the placebo effect within the trial may be quite
different to the placebo effect seen in clinical practice. (The physiological responses will also change, as
the general health of the population changes. For example, two hundred years ago in north America, a
greater proportion of people had intestinal parasites than currently have them in the USA today, and fewer
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3. Outline of the thesis

The basic question I’m asking is, “Which analyses do the best job of answering the
questions we’re interested in, given how real trials differ from the ideal version?” The
answer depends on what we think is going on in clinical trials.

In Part 2 I will develop a graphical representation of the causal processes operating in
a clinical trial with non-adherence, and potential unblinding. This representation should
allow us to compare different analytic approaches in terms of which causal pathways in-
fluence their results. I’ll also take a historical detour, explaining how the Coronary Drug
Project has been misunderstood.

In Part 3 I’ll describe different ways to deal with the bias caused by unblinding. These
will range from actual solutions (measuring more variables, estimating the strength of bias,
etc) to simply assuming the problem doesn’t exist (e.g. when performing an intent-to-treat,
per protocol, or instrumental variables analysis).

In Part 4 I’ll consider what happens to our best methods when we measure variables
imprecisely. Linearity and multiple measurements will save ‘front door’ and instrumental
variables analyses, but not per protocol.

In the Conclusion I will argue that the research community’s preference for intention-
to-treat analyses is based on a degree of skepticism that is not applied uniformly to all
sources of bias, and make recommendations for the design and analysis of clinical trials.

Part 2. Experimental Design and Analytical Assumptions:
Nonadherence, Unblinding, and the Causal Structure of Real Trials

All analyses make certain assumptions in order to get a result. Often these assumptions
are grounded in the design of the trial – for example, assigning patients to groups at ran-
dom, by design, supports the assumption that no demographic factor influences a patient’s
assignment. However, some assumptions are more convenient than well-founded. When
the assumptions are violated, the results of the analysis can be mistaken; ineffective or
unsafe treatments may be given regulatory approval (or safe, effective treatments passed
over); and patients pay with their lives.

As a result, arguments for preferring one analysis over another frequently hinge on which
analysis’ assumptions are better justified, and which are more likely to lead to serious
mistakes if they are violated. For example, Russell Katz explains the FDA’s preference for
intention-to-treat analyses like so:

“[...] the Food and Drug Administration does have great interest in seeing
the results of an intent-to-treat analysis. The Food and Drug Administra-
tion view is that such an analysis has the great advantage of not introducing

suffered from allergies. However, much of our physiology remains the same, whereas medical knowledge has
undergone a massive transformation.)

Secondly, the placebo effect may be achievable by other means – for example, by taking a sugar pill that
is labeled as the active treatment – which are considerably cheaper and less risky than active treatment.
Thus, even if the placebo effect is beneficial, it is not necessarily a unique advantage of the treatment.
Alternative treatments (or even non-treatment) might be given the same advantage.
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the kind of bias that postrandomization exclusions can produce. Such biases
can lead to erroneous conclusions, as shall be seen. Intent-to-treat analyses
are not without problems, but they do provide critical information. Clearly,
the Food and Drug Administration feels that the intent-to-treat analysis is
the standard against which other analyses must be compared; after all, it
is the only analysis that the Food and Drug Administration specifically
requires to be included in all new drug applications. But, again, it bears
repeating that it is not necessarily the only analysis that may be judged to
be acceptable.” [27, page 252]

I describe intent-to-treat analyses in Section 11.1. Here, I aim to illuminate the kinds of
biases Katz is referring to. To that end, I will discuss at length the causal processes that
operate in clinical trials, and how those processes justify or prohibit the kinds of analytic
assumptions we might like to make. This section is supposed to give a causal interpretation
to the assumptions and aid your intuitions regarding them.

4. Assumed background knowledge

4.1. Causal graphical models. My approach is to translate the design features and
assumptions into the causal graphical models framework whenever possible,7 so they can
be compared easily. Providing a general introduction to causal graphical models is beyond
the scope of this thesis, and the reader is referred to several excellent articles and books on
the topic, from most accessible to most comprehensive: [13], [36], [43, part III], [37], [46].
I will assume general familiarity with:

• the concept of a “direct cause” relative to a set of variables
• the “direct effect” and “total effect” of some variable A, relative to a graph and to

at least two possible values for A
• the concepts “path”, “directed path” and “undirected path”, and “back-door path”
• a variable being a collider (or non-collider) relative to a given path
• d -separation properties of graphs, and the resulting conditional independence con-

straints
• occasionally I will mention the Causal Markov Condition and the do-calculus.

All diagrams of graphical models are assumed to be common-cause complete – that is,
of the set of variables included in the graph, no two of them share a common cause that
has been omitted from the graph. Following convention, I draw circles around unobserved
variables.

5. The causal structure of a clinical trial

Say we want to learn the on-treatment effect (i.e. the effect of actually taking treatment,
as opposed to merely being assigned to take it). We need a general representation of the
clinical trial, so we can compare the different statistical techniques for learning this effect.

7Parametric assumptions, for example, are not represented in this framework and require separate
treatment.
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Figure 1 represents the basic causal structure of a randomised, double-blind clinical trial.
All the features of this causal diagram are drawn from our background knowledge:

(1) Allocation is exogenous8 because patients are allocated to groups by randomisation.
(2) We know that Allocation influences whether a patient receives Treatment or not.
(3) We know (or at least can’t rule out) that Treatment influences Outcome.
(4) Because the trial is blinded, the only way that Allocation can influence Outcome

is through Treatment.
(5) We allow the possibility that some unidentified, unobserved causes U9 influence

both adherence to Treatment, and Outcome.

Allocation Treatment Outcome

U

Figure 1. The causal structure of a randomised, double-blind trial with
non-adherence

By contrast with Figure 1, Figure 2 represents an unblinded trial. In Figure 2, there is a
direct effect of Allocation on Outcome. This might occur if reporting bias or differential
treatment (see Section 2.1) affected patients’ measured clinical Outcome without going
through Treatment.

Allocation Treatment Outcome

U

Figure 2. The causal structure of an unblinded trial

8I.e. it has no parents.
9U is circled in Figure 1 to follow the convention of circling unobserved variables. The bold typeface

reminds us that U may represent a set of several variables. The structural relationships among the members
of U would matter if we were trying to (a) block the path through U by conditioning on them, or (b) learn
more about the causal structure by observing the d-separation relationships between members of U and
other variables. So long as we are not trying to learn about U and are assuming that the path through U
is always open, we can represent U simply as a single node in the graph.
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Our problem is now clear. We want to find the effect of Treatment on Outcome, but
there is a back-door pathway through U, which cannot be blocked by conditioning because
U is unobserved. (If the trial is unblinded, then we have a second back-door pathway
through Allocation, but Allocation is observed, so we can block that path.)

If we wished to find the effect of Allocation on Outcome that goes through Treatment,
we would have no problems if the trial were blinded; if it were unblinded, then the direct
effect of Allocation on Outcome would bias our analysis. (See Section 2.1 for why we would
prefer to exclude the Allocation→ Outcome edge.)

However, this representation is too basic to represent much of the literature; it does not
even represent Adherence as a variable. To represent more analyses, and to find a solution
to our problem, we need to expand our representation.

6. Non-Adherence

In the real world, patients do not always receive the treatment they were assigned to
take, for many reasons (including forgetfulness, resolution of the illness, serious side effects,
etc.). This is why Allocation and Treatment are separate variables in Figures 1 and 2. But
many analyses refer to Adherence instead of Treatment. These are related but distinct
variables. Adherence refers to the patient’s dosing behavior;10 as a result, patients assigned
to take a placebo can have 100% adherence, if they take the placebo religiously. Treatment,
a.k.a. Treatment Received, refers to the amount of active treatment received; so patients
assigned to placebo automatically receive zero treatment (unless they somehow obtain it
in violation of the study protocol).

In the literature, authors typically use only one of these two variables, and the choice
depends on their purpose. Causal analyses use Treatment as the variable of interest,
because adherence to placebo is assumed to have no causal effect. Associational analyses,
however, usually use Adherence as the variable of interest, because even if it has no causal
effect, adherence behavior is associated with other favorable prognostic factors. People who
take their placebo religiously tend to do other healthy things, too. Per protocol analyses,
for example, compare placebo-adherers with treatment-adherers, excluding non-adherers
from both groups.

To understand and compare the causal and associational analyses, we need to represent
both Adherence and Treatment in our framework. Figure 3 expands our graph to represent
both variables.

It is crucial to realise that Treatment is a deterministic function of its two par-
ents, Adherence and Allocation . If I know which group a patient was allocated to,
and I know how many of the prescribed pills she took, then I know exactly how many
pills of the active treatment she took. That is why there is no edge from U to Treat-
ment ; nothing besides Allocation and Adherence can influence Treatment. Consequently,
if I condition on Allocation and Adherence, I effectively condition on Treatment as well,

10There are also cases where ‘adherence’ is partly determined by the physician – for example, a physician
might decide a patient is too sick for surgery, or requires a higher dose of the medication, etc. Whether
adherence is defined as being under patient control or not depends on the study.
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Allocation Treatment Outcome
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Figure 3. Expanded causal structure representing both Adherence and
Treatment in a blinded trial.

so the conditional independence relationships are somewhat different from those of regu-
lar d -separation. For a formal characterisation of some of the properties of graphs with
deterministic relationships, see [46, pages 53–56].

Again, the features of the graph are drawn from our background knowledge. Note that:

(1) There is no edge from Allocation to Adherence; this model assumes that group
assignment has no influence on adherence. This depends on blinding. It might be
false if, for example, one of the treatments has unpleasant side-effects. (See Section
7 for relaxation of this assumption.)

(2) There is no edge from Adherence to Outcome. This represents our assumption
that simply taking pills does not influence medical outcome, except via the active
treatment contained within them.

(3) As in the previous example, there is an unobserved (set of) variable(s), U, that is
a common cause of both Adherence and Outcome. This could stand for variables
like conscientiousness, stress, health-literacy, etc. that we would expect to influence
both adherence and medical outcome.

Given this structure, we can see that per protocol analyses (see Section 11.2) are unbi-
ased: condition on Adherence, and you block the back–door pathway between Treatment
and Outcome. It’s a very simple measure, but assuming the graph in Figure 3 is correct,
it should work.

So why does the FDA prefer intention-to-treat analyses (see Section 11.1) over per
protocol? Because Figure 3 may not represent the true graph. If the trial is unblinded,
Allocation may influence Adherence, so conditioning on Adherence opens up a pathway
through U (see Figure 4). The FDA wants to prevent this pathway from biasing the results
of the trial.

On the other hand, if the trial is unblinded, Allocation may have a direct effect on
Outcome, so the intention-to-treat analysis may also be biased! The strong preference for
intention-to-treat analyses seems strange, given that in the same circumstances when we’d
expect per protocol analyses to be biased – namely unblinded trials – we would also expect
that intention-to-treat analyses might be biased.

6.1. The Coronary Drug Project & the argument against using adherence data.
I believe that historical events helped make the FDA, and the biostatistics community
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Allocation Treatment Outcome
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Figure 4. Causal structure of a Trial with Non-Adherence and Unblinding

in general, sensitive to bias through the Allocation → Adherence ← U → Outcome
pathway. One particular trial, the Coronary Drug Project (CDP), contributed to this
extreme wariness. In the CDP, the Adherence ← U → Outcome path produced a very
strong association between Adherence and Outcome (see Table 1). The trial authors used
this effect to argue that bias could result from any analysis that conditioned on Adherence
– even though in the CDP, it appeared that the Allocation→ Adherence edge was either
absent or extremely weak; and even though conditioning on Adherence made no difference
to the trial results.

Table 1. Death rates within the CDP adherence subgroups

Clofibrate Placebo

Adherance ≥ 80% 15.0% 15.1%
Adherance < 80% 28.2% 24.6%

Total 20.0% 20.9%

The history of arguments against per protocol analyses is clearly a tangent from our
investigation into the causal structure of a clinical trial. However, there are two reasons to
cover it. Firstly, CDP was very influential. The Cochrane Collaboration’s11 Handbook for
Authors of Systematic Reviews [22] cites it as a cautionary tale, and Russell Katz refers to
it when he explains the FDA’s reservations regarding per protocol analyses. [27] Secondly,
I believe the CDP is not a cautionary tale at all, and the fact that it has been interpreted
as one reflects a confusion in the literature. It’s important to understand this confusion,
so that the arguments in this thesis do not seem trivial or obvious. Apparently they are
not obvious to the FDA or the Cochrane Collaboration.

11The Cochrane Collaboration is an international non-profit dedicated to performing and maintaining
high-quality meta-analyses of medical research. Without meta-analyses, the volume of medical research
would be too massive for individual doctors to follow. The Cochrane Collaboration, having no vested
interests, is extremely influential.
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Here’s how the Cochrane Handbook describes the CDP:

‘As-treated’ (per-protocol) analyses
[...] A similarly inappropriate approach to analysis of a study is to focus

only on participants who complied with the protocol. A striking exam-
ple is provided by a trial of the lipid lowering drug, clofibrate (Coronary
Drug Project Research Group 1980). The five-year mortality in 1103 men
assigned to clofibrate was 20.0%, and in 2789 men assigned to placebo
was 20.9% (P=0.55). Those who adhered well to the protocol in the clofi-
brate group had lower five-year mortality (15.0%) than those who did not
(24.6%). However, a similar difference between ‘good adherers’ and ‘poor
adherers’ was observed in the placebo group (15.1% vs 28.3%). Thus,
adherence was a marker of prognosis rather than modifying the effect of
clofibrate. These findings show the serious difficulty of evaluating inter-
vention efficacy in subgroups determined by patient responses to the in-
terventions. Because non-receipt of intervention can be more informative
than non-availability of outcome data, there is a high risk of bias in anal-
yses restricted to compliers, even with low rates of incomplete data. [22,
http://handbook.cochrane.org/chapter 8/8 13 2 2 high risk of

bias due to incomplete outcome data.htm]

It’s is not at all clear how the results of the CDP demonstrate “a high risk of bias in
analyses restricted to compliers”. Comparing clofibrate-compliers with placebo-compliers
produces exactly the same result as comparing the whole clofibrate group with the whole
placebo group; clofibrate has no effect. If anything, the CDP seems almost miraculous in
how little association there is between Allocation and Adherence (an independence you’d
only expect to see in a perfectly blinded trial).

Russell Katz from the FDA provides an excellent summary of the CDP Research Group’s
original argument:

The authors of the study attempted to determine if the differences in the
two placebo subgroups could be established through the use of multivariate
statistical methods. A multiple linear regression analysis of 5-year mortal-
ity and compliance was carried out on 40 baseline characteristics used as
adjusting variables. This analysis yielded an adjusted mortality for good
compliers of 16.4% and 25.8% for poor compliers. The minimal differ-
ences between the unadjusted and adjusted mortality rates demonstrate
that differences in these baseline variables account for little of the differ-
ences in outcome between the subgroups defined by compliance. Clearly,
then, other fundamental differences between the patients in the subgroups
have not been detected by this detailed analytic procedure. What this im-
plies is that compliers are, in some unknown and perhaps unknowable way,
different from noncompliers.

The authors also attempted to determine if patients who complied with
the prescribed clofibrate regimen were benefited, despite the absence of any
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overall effect on mortality. They concluded that there was no clearly valid
way to arrive at this conclusion, primarily because it was impossible to
identify the appropriate placebo comparison group. For example, the 5-
year mortality for poor clofibrate compliers was 24.6% but was only 19.4%
for all placebo patients. Alternatively, mortality in the good clofibrate com-
pliers was only 15.0%, as compared with 19.4% for the placebo patients.12

However, the argument can be made that the use of all placebo patients
as the control group is inappropriate, because it is known that the two
compliance subgroups have dissimilar outcomes.

One then could compare the between-treatment responses within com-
pliance strata (i.e., clofibrate good compliers compared with placebo good
compliers, and the corresponding poor compliers), which would give still
different results. The authors suggest that any conclusion could be justi-
fied, depending on which groups are compared, but that any of the results
of these subgroup comparisons are unreliable, because there is absolutely
no assurance that the compliers in the placebo group are the same as the
compliers (or noncompliers to noncompliers) on both known and unknown
factors that might affect outcome. It is possible, for example, that the
reasons for compliance (or noncompliance) are different between treatment
groups and that those differences might have an effect on the outcome. It
has been seen that at least in this case, detailed statistical manipulation was
unable to detect any systematic reason for the differences between the two
subgroups of compliers, yet clearly differences must exist. The only way to
be assured that groups are comparable in all relevant respects (i.e, on those
factors that may affect outcome), both known and unknown, is through the
randomization process. Excluding patients after randomization, however
“logical” the maneuver appears to be, can result in groups unbalanced on
(unknown) critical factors, thereby introducing bias into the trial. Analyz-
ing all patients randomized to treatment allows the assumptions on which

12Unbelievable as it seems, Katz is being charitable. The CDP research group really did make this
argument (references to tables omitted):

“Other analyses indicate additional difficulties in interpreting data on adherence and mortality.
The five-year mortality was 24.6 per cent for poor adherers in the clofibrate group, as compared
with 19.4 per cent for all patients, regardless of adherence, in the placebo group. On the other
hand, mortality in good adherers in the clofibrate group was substantially lower than mortality
in the placebo group (15.0 vs. 19.4 per cent) [...]. However, it may be argued that combining
the two adherence subgroups of the placebo groups in such an analysis is almost certainly
inappropriate, since the two subgroups have such dissimilar mortality results. If the adherence
subgroups for clofibrate are compared with the corresponding subgroups for placebo, the five
year mortality in poor adherers to clofibrate is lower than that in poor adherers to placebo
(24.6 vs. 28.2 percent), whereas there is no difference in mortality between good adherers in the
clofibrate group and good adherers in the placebo group (15.0 vs. 15.1 per cent) [...]. Therefore,
one can justify almost any conclusion, depending on the analysis chosen.” [20]
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the successful interpretation of the data rely to be fulfilled and hence gives
meaning to significance testing. [27]

That’s the argument. The CDP research group published zero empirical evidence that
“the reasons for compliance (or noncompliance) are different between treatment groups”,
but there was no in-principle guarantee that Allocation had no effect on Adherence.

Despite the lack of a priori guarantee, there was empirical evidence that Allocation
had no effect on Adherence. Firstly, the distribution of adherence was similar between
the clofibrate and placebo arms (see Figure 5). A Pearson chi-square test for a difference
between the clofibrate and placebo adherence distributions is not even remotely significant:
χ2(5) = 5.86, p = 0.32. Likewise, a Pearson chi-squared test for the independence of
Allocation and Outcome conditional on Adherence is non-significant: χ2(3) = 1.89, p =
0.60. The distribution of side effects shows only a very slight predominance of side effects
for clofibrate (see Figure 6, and ignore the Niacin columns).

So how did the Coronary Drug Project become the textbook example for cases when
Allocation could influence Adherence, such that conditioning on Adherence would intro-
duce bias through the Allocation→ Adherence← U→ Outcome pathway? The authors
(rightly) emphasized the strength of the association between Adherence and Outcomes.
Given the Adherence ← U → Outcome pathway was so strong, they realized that even
a weak Adherence → Outcomes edge could cause substantial bias. However, they only
attempted to “control for” causes along the Adherence ← U → Outcome pathway, and
made no investigation of whether there was an Allocation→ Adherence edge in their trial.
Instead, they argued that in principle, this edge was always possible.

The CDP’s paper presented the epitome of an unbiased per protocol analysis, and then
claimed that it might be biased. This set a standard for unbiasedness that no actual trial
could surpass. As a result, the CDP suppressed the use of adherence data for exploratory
analyses. Because they did not investigate the presence or mechanism of an Allocation→
Adherence edge, they did nothing to encourage researchers to think clearly about the
causal processes producing bias, and ways in which it could be identified, measured and
controlled.

In 1980 the CDP research group wrote that “there is no way of ascertaining precisely how
or why the patients in the clofibrate and placebo groups have selected themselves or have
become selected into the subgroups of good and poor adherers.” [20] The CDP is still cited
today and its arguments are repeated without qualification. [7, page 374–5] [22] [27, page
671] [33, page 254–5] We can do better, I argue, if we think clearly about the mechanism
that might make participants adhere for different reasons in one group than in the other:
namely, unblinding.

7. Blinding

Blinding is a design feature of most randomised controlled trials. A trial is called ‘double-
blind’ if neither the patients, nor the physicians evaluating their outcomes, are told the
patients’ group assignment. However, I want to distinguish between the procedure of blind-
ing and its intended effect, which is to keep knowledge of the assignment from influencing
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Figure 5. The distribution of adherence and cumulative dropout rate for
clofibrate, placebo and niacin. Reproduced without permission from [19].

19



Elizabeth Silver Clinical trials with non-adherence & unblinding

Figure 6. The distribution of side effects to clofibrate, placebo and niacin.
Reproduced without permission from [19].

evaluation of outcomes. Even if the procedure is followed to the letter, the effect might not
be achieved, if there is some other way for patients to discover their treatment assignment.
For example, if the treatment causes a rash in 30% of patients (and the placebo group is
rash-free), then 30% of the treatment group will be able to guess correctly that they’re
taking the treatment, even if no-one told them. That knowledge may influence how both
patients and physicians assess their medical outcomes. For this reason, I define unblind-
ing not in terms of whether trialists failed to follow the procedure, but rather in terms of
whether blinding could have its intended effect.

It’s also worth noting how unblinding is measured. Trialists typically (when they measure
blinding at all) ask participants (and sometimes assessors) to guess which group they had
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been assigned to. They call the trial unblinded if the participants, and/or the physicians
evaluating their outcomes, can guess the patients’ group allocation better than chance. In
other words, they check for independence or dependence between Allocation and Beliefs
(where Beliefs is just shorthand for “beliefs about allocation”).

According to the Causal Markov Condition, if two variables are unconditionally asso-
ciated, there must be some causal connection between them – either a path from one to
the other, or else a common cause of both. Now, Allocation is randomized, so it has no
causes; Beliefs cannot cause it, and neither can there be a common cause of Allocation
and Beliefs. As a result, if we see an association between Allocation and Beliefs, it must
be the result of a directed path from Allocation to Beliefs. This makes intuitive sense –
a trial is unblinded when the group I’m actually assigned to influences what group I think
I’m assigned to. I’ll adopt this causal interpretation as my definition of unblinding.

Definition 1: Unblinding. A trial is unblinded iff there is a directed path
from Allocation to the participants’ Beliefs about their allocation, and/or
the Beliefs of the physicians evaluating the patients’ outcomes.

Given this formulation, we can talk about degree and mechanism of unblinding. If a
trial is unblinded to a higher degree, the association between Allocation and Beliefs will
be stronger – i.e. more patients may be able to guess correctly, or the ones that guess
correctly may be more certain about their guesses.13

We care about unblinding because we worry that in unblinded trials, Allocation might
influence Outcome through reporting bias or differential treatment of the two groups,
rather than through the intended treatment (see Section 2.1). So the mechanism of un-
blinding matters, and will be treatment- and trial-specific. Here’s an example of a possible
mechanism: I might get a rash that allows me (and my doctor) to infer I’m in the active
treatment group. Or I might make the same inference because I experience a noticeable
treatment benefit. Alternatively, if I am a relatively stable patient, I might notice that my
condition has not changed at all since starting treatment, and infer that I have been given a
placebo. The mechanism determines which patients become unblinded. Only patients who
are susceptible to adverse effects, responsive to the treatment, or aware of their condition
remaining stable (respectively) can be unblinded in these ways.

In an unblinded trial, we might represent reporting bias and differential treatment by
adding a direct edge from Allocation to Outcome. We would also have to add an edge from
Allocation to Adherence, because as soon as I know my allocation, that may influence
whether I choose to adhere (for example, if I learn I’m taking a placebo, I may not be
motivated to continue). Figure 7 represents this situation.

Unfortunately, Figure 7 doesn’t capture the mechanism of unblinding we just discussed.
In the example, I learn my Allocation by experiencing some actual Outcome caused by

13Note that participants might know their assignment but not know that they know it – if, for example,
they do not feel confident in their best guess. In this case they might guess better than chance on a
forced-choice questionnaire, but guess at chance levels if allowed to answer, ‘I don’t know’.
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Figure 7. Causal structure of a Trial with Non-Adherence and Unblinding

Treatment. Barring cases where the two regimens are identifiable from the outset,14 all
instances of unblinding must work this way. So it seems like all the effects of Allocation
should go through Treatment after all; we must remove the direct edges from Allocation
to Outcome and Adherence. But then the nuisance effects of Allocation are included in
the edge from Treatment to Outcome, which is exactly what we want to measure, so the
graph does not represent the problem.

We want to capture both the nuisance pathways opened up by unblinding, and the intu-
ition that in trials designed to be double-blind, unblinding always occurs as a consequence
of some treatment effect. To do this we need to expand our graph to show the process as a
time-series. Even if the initial round of treatment is perfectly blinded, the problem is that
subsequent treatments become unblinded as a consequence of the first round of treatment.

7.1. Time series representation of an unblinded trial. As with all the graphical rep-
resentations so far, we will construct the time-series graph using our background knowledge
of the causal connections. The time-series representation is more complicated, however.
In order to capture the way in which unblinding affects outcomes through a “nuisance
pathway”, we must add a new variable on that pathway: patient and doctor Beliefs (i.e.
their beliefs about Allocation). In a blinded trial, Beliefs should be d-separated from
Allocation given the empty set, whereas in an unblinded trial they should be d-connected.

Figure 8 represents this d-separation relationship, plus several key features of the causal
process. To reduce graphical “spaghetti” I have represented Outcome as occurring at only
one time (the end of the trial), and likewise with the set of unobserved common causes
U, but in principle both could be made part of the time-series. I have not included an

14A trial of surgery vs. medication, or medication vs. counseling, or exercise vs. diet, will necessarily
be unblinded like this, and thus might be represented by Figure 7. Trials where the regimens appear very
similar – for example, a trial comparing two different laparoscopic surgical techniques, or two different
QD pharmaceutical regimens – will not. However even among pharmaceutical trials, it is possible that
participants could be unblinded immediately if, for example, the pills look, taste or smell like an over-the-
counter preparation of the same drug. In the text I limit my discussion to trials where blinding was initially
successful, so all edges out of Allocation must go through Treatment.
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edge from Allocation to B1, solely because I am limiting my discussion to trials that were
intended to be blinded – where some effort was made to conceal allocation – so that the
only way Allocation could affect Beliefs would be through Treatment. The double-lined
arrows from Treatmentt to Beliefst′ represent the edges that are present in unblinded
trials, but absent in blinded trials. For easy comparison, Figure 9 represents a blinded trial
(without the double arrows).

Allocation
T1

T2

T3

Outcome

U
A1

A2

A3

B1

B2

B3

Figure 8. Time Series of a Trial with Non-Adherence (and double arrows
for effects of Unblinding). At stands for adherence at time t, Tt for treatment
received at t, Bt for patient beliefs at t.

8. Bias due to unblinding

Before we can determine whether our analysis is biased, we have to decide which effect
we are interested in estimating. But now the picture is much more complicated; it is by
no means clear what we wish to estimate. Previously we were interested in two effects:
(a) the direct effect of Treatment on Outcome, and (b) the portion of the total effect
of Allocation on Outcome that went through Treatment. The aim was to exclude the
influence of expectation effects, attribution effects, differential treatment of the two groups,
and all such phenomena that might, in an unblinded trial, produce a comparison that did
not seem fair.

Now, however, we have to consider pathways like: Allocation→ Treatmentt → Beliefst →
Adherencet+1 → Treatmentt+1 → Outcome. This might represent a causal story like so:
the drug appeared to have no effect, so I came to believe I was taking a placebo, so I
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Figure 9. Time Series of a Trial with Non-Adherence (but no Unblinding).
At stands for adherence at time t, Tt for treatment received at t, Bt for
patient beliefs at t.

stopped adhering, which set my treatment level to zero, and this affected my outcome.
Alternately, it might mean: the drug had noticeable side effects, so I came to believe I
was taking treatment, which encouraged me to adhere, which raised my treatment level,
affecting my medical outcome.

This pathway only exists in an unblinded trial, because it involves an edge from Treatment
to Beliefs. It may cause the two treatment groups to adhere to very different degrees (or
medically different groups of people to adhere in each group), so it might seem to create
an unfair comparison between groups, and on those grounds we might want to exclude it
from influencing our analysis.

On the other hand, in this pathway, Beliefs influences my Outcome indirectly – via
my future Treatmentt+1 value – rather than directly, as with a reporting bias effect.
And we are interested in the effects of that Treatmentt+1. We want to include every
Treatmentt → Outcome edge in our effect of interest. Also, if one regimen is easier or more
pleasant to follow, then that will increase its allocation effect (due to increased adherence),
and we wish to measure this benefit when we calculate the total effect of prescribing the
regimen.

By contrast, paths like Allocation → Treatment → Beliefs → Outcomes must be ex-
cluded, because they represent exactly those reporting biases, differential co-prescriptions,
etc. that we wish to prevent from influencing our estimate.
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We also want to exclude paths that contain a collider, because they represent statistical
artifacts. Those pathways will only be open if we condition on the collider, or one of its
descendants, in the analysis. They cannot represent causal effects of treatment.

Thus, even if I remain agnostic about whether to include paths like Treatmentt →
Beliefst → Adherencet+1 → Treatmentt+1, there are still three desiderata for what to
include when we estimate the effect of Allocation on Outcomes and the effect of Treatment
on Outcomes. We should:

(1) Include every direct edge from Treatment to Outcomes,
(2) Exclude every direct edge from Beliefs to Outcomes, and
(3) Exclude every pathway that contains a collider.

These are easy to satisfy in a blinded trial (see Figure 9). To estimate the effect of
Allocation on Outcome, it’s sufficient to calculate the association between Allocation and
Outcome; there is no confounding. To estimate the effect of Treatment on Outcome, we
can simply condition on all time-steps of Adherence (as in a Per Protocol analysis); this
will block the confounding pathways through U.

However, in the unblinded trial shown in Figure 8, our three desiderata cannot be jointly
satisfied. Consider B1. If we do not condition on it,15 then the pathway Allocation →
T1 → B1 → Outcome is active, violating desideratum (2). If we do condition on it, the
pathway Allocation → T1 → B1 ← U → Outcome becomes active, violating (3). Thus
given the time-series representation above, we cannot satisfy desiderata (2) and (3) by
conditioning.

This is true whether we are trying to estimate the Allocation Effect or the Treatment
Effect. However, if we are trying to estimate the Treatment Effect, we have an additional
worry. We must condition on Adherence to block the back-door pathway through U; but
this activates Adherence as a collider, and opens up the path Treatment → Beliefs →
Adherence← U→ Outcome. We can break this pathway if we condition on Beliefs, but
then we open up the pathway Allocation → Treatment → Beliefs ← U → Outcome.
There is no escape: a collider path always may be active in a per protocol analysis of an
unblinded trial.

Thus, for both of the causal effects we’re interested in, bias is introduced if and only if
the trial is unblinded. However there is a difference in which pathways bias the two effects.
Assuming that we don’t condition on Beliefs (because as far as I know, no analyst has
conditioned on Beliefs in these circumstances), the Allocation Effect will only be biased by
a direct effect of Beliefs on Outcome, whereas the Treatment Effect will be biased by both
that effect, and also the pathway Treatment→ Beliefs→ Adherence← U→ Outcome.
So intention-to-treat and per protocol analyses will be biased in the same circumstances,
but per protocol analyses may be biased to a greater degree. This difference might be the
reason for the extra suspicion of per protocol analyses.

Note that if we do condition on Beliefs, then our estimates of the Allocation effect and
the Treatment effect are both confounded by the same pathway: Treatment→ Beliefs←

15In this section I suggest conditioning on patients’ and doctors’ Beliefs about allocation in order to
better estimate the effect of treatment. As far as I know this has not been done.
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U → Outcome. This is a good reason to try measuring Beliefs in more trials, and
see whether conditioning on Beliefs produces consistent results for the Allocation and
Treatment effects.

Part 3. Possible approaches to deal with confounding by unblinding

In this sorry situation, there are at least four possible approaches we can take:

(1) Find some estimator that is not biased by the existence of these nuisance pathways
– one that can control for bias using some operation besides conditioning (perhaps
by making parametric assumptions);

(2) Expand the causal structure to include extra variables that we can condition on to
block the nuisance pathways;

(3) Argue for a given trial that the magnitude of the bias is small; or
(4) Assume some weaker consequence of blinding that is sufficient to eliminate bias

(perhaps with support from #3).

I know of no solutions that use option (1). I’ll cover options (2)–(4) in turn.

9. Expanding the causal structure

9.1. Blocking the path through U. Looking back at Figure 8, clearly the confounding
through U is the source of all our woes. Authors who notice an association between
Adherence and Outcome in the placebo group often propose plausible-sounding candidates
for some of the variables in U . [24] For example, Simpson et. al (2006) comments that
“diet, exercise, regular follow-up with healthcare professionals, immunisations, screening,
and use of other drugs,” as well as depression, could contribute to the association between
Adherence and Outcome. [45] John Urquhart proposed that adherence to effective non-
trial medication could explain practically all of the association between adherence and
outcomes in the Coronary Drug Project. [49] This hypothesis is particularly plausible
because people who adhere to one medication are likely to adhere to others, [6] and because
the participants in the CDP were prescribed many non-trial medications (some of which
were effective) [18, p. I-29, Table 11], [19, p. 376, Table 20].

In most trials these variables are not measured. Co-prescriptions may be measured, but
adherence to those co-prescriptions is what matters, and it is not measured. In theory, a
trial could be designed with the secondary goal of measuring enough candidate members
of U to block the pathway through U.

Unfortunately if the treatment is effective, it is impossible to tell whether a set of can-
didates C block the pathway through U. We can do it in the placebo group, but not the
active treatment group, for the following reasons:

Say we are looking only at the placebo group (i.e. conditioning on Allocation = 0).
There, we expect that Treatment has no direct effect on Outcome, because the patients
are not receiving any treatment. So all the Treatment→ Outcome edges vanish. Then the
only pathways d-connecting Adherence to Outcome go through Beliefs or U. Thus, if we
condition on our set of candidates C and also Beliefs, then we will d-separate Adherence
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from Outcome if and only if C blocks the pathway through U. So in the placebo group it
suffices to check whether Adherence ⊥⊥ Outcome|{C, Beliefs}.16

In the treatment group, however, we expect Treatment to affect Outcome directly.
Thus, even if we condition on Beliefs, and C blocks the pathway through U, we still
have the active path Adherence→ Treatment→ Outcome, d-connecting Adherence and
Outcome. We cannot block this path by conditioning on Treatment, because Adherence
and Treatment are so closely related – in fact, in the treatment group they are identical –
that if we condition on Treatment there will be no variation left in Adherence.

This difference between the groups matters, because there may be an interaction between
U and Beliefs when they influence Adherence. If there’s no such interaction, then we can
assume that if C blocks the pathway through U in the placebo group, then it also does
so in the treatment group. Unfortunately, we can only check indirect indicators of this
interaction, such as:

(a) That the patients with zero adherence to treatment have similar outcomes to the
patients with zero adherence to placebo; or

(b) That the difference in outcomes between good adherers to treatment and good adherers
to placebo is consistent with the allocation effect measured in an ITT analysis.

9.2. Using mediator variables and the Front Door Criterion. An alternative ap-
proach is to use Judea Pearl’s Front Door Criterion, [37] a technique usually applied to
observational studies. It involves finding a mediator of the effect of Treatment on Outcome
– that is, a variable on the causal pathway between them. In general we can picture the
drug mechanism of action as having this form: Treatment → Mediator → Outcome.
Real examples might include AZT → V iral Load → CD4 count (for HIV infection), or
Bisphosphonates → Bone Density → Fractures (for osteoporosis). If we have a good
mediator, then our causal graph should look like Figure 10.

Treatment Mediator Outcome

U

Figure 10. Mediator variable used for Front Door analysis

There is an open back-door pathway between Treatment and Outcome, which cannot
be blocked by conditioning, so it might look like the effect of Treatment on Outcome is

16This is the test the CDP research group performed when they ran their multiple regression. They
failed to break the association between Adherence and Outcome, indicating that they had not conditioned
on the right variables. Their test was valid in both groups, because the treatment was completely ineffective.
In trials of effective treatments it would only be a valid test in the placebo group – a point that the CDP
research group did not make, and to the best of my knowledge, neither has anyone else who has repeated
their argument.
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hopelessly confounded. The key to the Front Door method is that the effect of Treatment
on Mediator is unconfounded, and the effect of Mediator on Outcome is unconfounded
if we condition on Treatment (blocking the back-door pathway through U). Thus, intu-
itively, we can estimate the causal effect of Treatment on Outcome by estimating each
step in the pathway, and then combining them. The Front-Door Formula (for discrete
variables) is as follows:

P (O|do(T = t)) =
∑
m

P (M = m|T = t)
∑
t′

P (O = o|T = t′,M = m)P (T = t′)

where O represents Outcome, T is Treatment and M is the Mediator. There is a natural
generalization to continuous variables. The formula gives us the entire probability distri-
bution of Outcome for any setting of Treatment, so for any comparison of two values of
Treatment, we can use it to compute the average causal effect.

The problem is that there may be no unconfounded mediator variable. In our osteo-
porosis example, Exercise is probably a common cause of Bone Density and Fractures.
If any unmeasured common causes fits the same structural position as Exercise or V in
Figure 11, the Front Door method will fail. Likewise, if there is some a direct effect of
Treatment on Outcome that does not go through the Mediator, the Front Door method
will fail to capture that part of the total effect of Treatment on Outcome, even though it
does capture the portion of the effect that goes through the Mediator. So the Front Door
method may work in specific cases where we have very good background knowledge about
the causal mechanism of the treatment, and believe we have an unconfounded mediator.
Otherwise it will not be applicable.

Treatment Bone Density Fractures

U

ExerciseV

Figure 11. Causal structure of a Confounded Treatment Mechanism

10. Argue for a given trial that the magnitude of the bias is small

We might argue that the analysis of our particular trial is not biased. There are multiple
ways to go about this. We could argue that the trial is blinded (or very close to blinded);
in other words, we’d argue that the Treatment → Beliefs edges are absent, or (if our
goal is a per protocol analysis) at least that the Allocation to Adherence path is absent.
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Alternatively, we could argue that despite being unblinded, this has no effect (or almost
no effect) on our results.

10.1. Arguing that the trial is blinded. If the trial is blinded, we expect Allocation to
be unconditionally independent of Beliefs. Therefore, we can test the success of blinding
empirically, assuming we have measured Beliefs.

In practice, however, trials rarely measure the success of blinding participants (and
even fewer measure blinding of assessors). When they do, they often find that blind has
been partly broken. [10] Furthermore, the methods for assessing the success of blinding
are inconsistent and usually inadequate, as is the reporting of the measurements. [4] There
exist proposals for better methods. [29] To reduce measurement error, a trial would need to
measure blinding (a) in all the groups of people involved in assessing outcomes, prescribing
cotreatment and influencing adherence, [8] (b) at multiple intervals throughout the trial,
and (c) using at least a forced-choice format (possibly with the addition of a second format
using an ‘unknown’ option, or an uncertainty scale).

If the trial is blinded, we would also expect Allocation to be unconditionally independent
of Adherence.17 This independence could also be tested empirically, and should be done
whenever the researchers wish to condition on Adherence (as in a per protocol analysis).

Researchers could also argue for the likely success of blinding on mechanistic grounds.
If the effect of treatment is not apparent to the participants (for example, treatments
for hypertension) and the treatment has no noticeable side effects (or is being compared
with an active placebo with a similar side-effect profile), one could argue that there is no
way that participants could learn their allocation. Of course, this could only supplement
rather than supplant the independence tests; there is no point arguing that participants
could not learn their allocation if, in fact, Beliefs are strongly correlated with Allocation.
For historical trials, in which Beliefs were not measured, seeing similar distributions of
Adherence, Side Effects, Dropout and noticeable Outcome across treatment groups can
provide indirect evidence of blinding.

10.2. Arguing that although the trial is unblinded, this did not affect the results.
Alternatively, if our tests show that the trial was somewhat unblinded, we may still be able
to argue that this does not affect the results of our analysis. In fact, researchers are put in
this position whenever they measure participants’ beliefs and find that the blind did not
hold during the trial.

These arguments are about the strength of various mechanisms, which will naturally
differ from trial to trial. The bias induced by conditioning on Adherence depends on the
degree of confounding through U, which varies from trial to trial. [45] The direct effect of
Beliefs on Outcome can vary: Trials in which participants have access to powerful non-
trial remedies afford greater scope for differential treatment. Reporting biases are stronger
for “subjective” or “soft” endpoints, such as pain, than “objective” or “hard” ones, such
as death. [41]

17In fact this would suffice for a per protocol analysis to be no more biased than an intention-to-treat
analysis, even if the unblinding creates a directed path Allocation→ Treatment→ Beliefs→ Outcome.
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Note, however, that apparently “hard” endpoints may be less objective than they seem.
The Anturane Reinfaction Trial [16, 17] is an illustrative example. The trialists excluded
‘non-analyzable’ deaths; the primary endpoint was defined not as death from all causes,
but death from myocardial infarction (MI), so several deaths were deemed ‘non-analyzable’
because the autopsy found that they were due to sudden death rather than MI. Distin-
guishing MI from sudden death was difficult; a clot could be missed on autopsy and the
death misclassified. Thus, what counts as a “hard” outcome can depend on the diagnos-
tic/evaluative procedure and the comparison class of outcomes. The FDA performed an
investigation of the trial and found that the vast majority of deaths excluded from analysis
had been in the Anturane group rather than the placebo group, enough to nullify the trial’s
findings. [48]

It is now impossible to know whether the Anturane researchers really were unblinded,
or if they were just astoundingly unlucky (as they claimed [44]). The point is that it would
be possible for unblinded researchers to selectively report an endpoint as hard as ‘death
from myocardial infarction’.

10.3. Greenland’s argument about colliders vs. common causes. Sander Green-
land has argued that under several different parameterizations, conditioning on colliders
introduces less bias than failing to condition on common causes. [14] This has the impli-
cation that if one variable is both a collider (one one pathway) and a common cause (on
another), we are better off conditioning on it than not doing so. In the case of clinical trials,
Adherence is not a common cause on the path Treatment← Adherence← U→ Outcome,
but it does block a path through the set of common causes U, whereas it is a collider on
the path Allocation→ Adherence← U→ Outcome. As such, conditioning on Adherence
may introduce less bias of the Treatment→ Outcome effect than it eliminates. However,
this is cold comfort to the biostatistics community, which sets extremely conservative stan-
dards for inference in randomized controlled trials (as exemplified by their interpretation
of the CDP).

11. Assume some consequence of blinding.

By far the most common approach to analysis is to assume some consequence of perfect
blinding that is sufficient to eliminate bias, but is weaker than assuming all the conse-
quences of blinding. This is obviously no guarantee against bias; the result of the analyses
hold conditional on the assumptions made.

I’ll cover three major approaches to analysis, all of which assume a consequence of
blinding:

(1) Intention to treat (ITT)
(2) Per protocol
(3) Instrumental variables (IV)

11.1. Intention To Treat. Intent-To-Treat (ITT) analysis is so called because of who is
included in the set of patients analyzed: namely, all the patients you intended to treat,
regardless of whether they actually took the treatment. Besides specifying who is to be
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included, and the fact that the two treatment arms are compared, there are no constraints
on what constituted an ITT analysis. It might be a simple t-test, a survival analysis,
or anything else. Intent-to-treat is sometimes called a “principle” rather than an analysis
because it can be applied to many different kinds of analyses. [34] The results of the analysis
are supposed to represent the effect of intending to treat someone – that is to say, the effect
of Allocation on Outcome, rather than the effect of Treatment. This typically produces an
underestimate of both treatment benefits and adverse effects in patients who were actually
treated.

Running an ITT analyses is less simple than it sounds. If participants drop out of the
study and cannot be contacted, their final data cannot be included in the analysis (although
data up until the point at which they dropped out may be included, for example in a survival
analysis). This matters in an unblinded trial, because participants can drop out of the two
groups for different reasons. The variable Dropout is in a similar structural position to
Adherence – it is plausibly a child of both Beliefs and U. Yet unlike Adherence, Dropout
is a selection variable; we are forced to condition on it. When we look at all our remaining
participants, we are looking at a subset of our original sample in which Dropout = 0
for everyone in that subsample. As a result, if the trial is unblinded, then even in an
ITT analysis, there is an open path that might bias our estimate of the Allocation Effect:
Allocation→ Treatment→ Beliefs→ Dropout← U→ Outcome.18

One approach to dropout is to “impute” (i.e. make up) data for the missing partici-
pants, but this requires dubious distributional assumptions about how similar the missing
participants are to the continuing ones, and in the worse case it would not only preserve
but exacerbate any bias produced by participants self-selecting themselves out of the study
for different reasons in the two arms. More appropriate is a sensitivity analysis, in which
the analyst calculates the results conditional on various different outcomes for the missing
participants, and takes the most extreme results to be bounds on the effect (although if
there is substantial dropout the bounds of a sensitivity analysis may be uninformative).
The rate of dropout limits how much it can affect our results, but so does the rate of out-
come events. If the trial is supposed to prevent a rare event, such as fractures in patients
with osteoporosis, even a small proportion of dropouts could bias the results substantially,
so long as it is not small relative to the number of fractures.

Another option is Last Observation Carried Forward (LOCF) analysis, which assumes
that participants who drop out will tend to stay in the same medical state as when
they dropped out; this can be biased if the sample tends to deteriorate or improve (e.g.
Alzheimers, or the common cold) and more participants drop from one group than the
other, so a correction for this effect and a sensitivity analysis are also useful. A last option,
widely used in economics to control for selection bias, is to apply the Heckman correction,
although that also depends on parametric assumptions.

ITT relies on the assumption of blinding for two things. Firstly, blinding implies that
there is no differential treatment of the two groups and no reporting bias. Thus in the static

18Sometimes researchers ignore this problem and simply analyze the data they have available. Although
this is often mislabeled ITT, it should properly be called an ‘available case’ analysis. [23]
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causal graph – see Figure 3 for a blinded version and Figure 4 for an unblinded one – ITT
assumes no direct effect of Allocation on Outcome that does not go through Treatment.
Secondly, blinding implies that no bias is induced by Dropout. However, many forms of
ITT analysis weaken this to something like, “despite potential bias induced by dropout,
the true result is within the bounds of our sensitivity analysis”, or “our LOCF analysis is
not biased by differential dropout”.

ITT tells us the effect of assigning a patient to take the treatment. What about the
effect of taking it?

11.2. Per Protocol. If we are interested in the effect of taking the treatment, rather than
just being assigned the treatment, the first thing we might try is a per protocol analysis, so
called because it aims to measure the effect of following the protocol. Traditionally a per
protocol analysis means an analysis that excluded non-adherent participants (by contrast
to an ITT analysis, which includes them).

However, there is no reason a per protocol analysis could not be made more sophisticated.
The essential idea is that we are conditioning on Adherence. If Adherence is not binary
but multi-valued discrete, we could compare the two groups stratified by adherence level;
if it is continuous, we could regress Outcome onto Adherence and compare the regression
slopes in the two groups. This would give us something similar to a dose-response curve.19

We could even use non-parametric regression if we do not want to assume a particular
parametric relationship, and compare the areas under the regression curve for each group.

One variation of this approach was pursued by Efron & Feldman (1991). In order to
estimate the dose-response curve for cholestyramine, they regressed Outcome onto Adher-
ence Quantile and compared the slopes between the two groups. Efron and Feldman did
not assume a linear dose-response relationship, opting instead for a quadratic model. [9]20

Per protocol analyses rely on the assumption of blinding for the same reasons ITT
analyses do: they assume there is no reporting bias and no differential treatment of the
two groups, and that there is no bias induced by conditioning on Dropout. However,
per protocol analyses need a third consequence of blinding: that there is no bias induced
by conditioning on Adherence. Returning to the time-series graph of an unblinded trial
(reprinted here as Figure 12), it’s clear that conditioning on Adherence opens up pathways
of the form Allocation→ Treatment→ Beliefs→ Adherence← U→ Outcome.

Strangely, the Cochrane Handbook instructs authors to perform a sensitivity analysis for
bias induced by Dropout, but gives no analogous instruction for bias induced by condition-
ing on Adherence, saying instead that intent-to-treat analyses should always be preferred

19Because the level of Adherence is not randomized, to interpret this as a true dose-response curve, we
have to assume that the effect of a given dose is independent of adherence-related patient characteristics.

20Note that Efron and Feldman did not refer to their analysis as ‘per protocol’, and it is much more
sophisticated than the typical analysis that is labeled ‘per protocol’. Also, the entire analysis was framed
as a potential outcomes analysis. Lastly, the choice to regress on Adherence Quantile instead of Adherence
was made because the distributions of Adherence were different in the two treatment groups, which implies
an Allocation→ Adherence edge. Efron and Feldman assumed that patients in the same quantiles in each
group were comparable, which amounts to assuming that Allocation to treatment just decreases Adherence
by some constant fraction, rather than interacting with U.
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Figure 12. Time Series of a Trial with Non-Adherence (and double arrows
for effects of Unblinding). At stands for adherence at time t, Tt for treatment
received at t, Bt for patient beliefs at t.

to per protocol. However, in theory, we could perform a sensitivity analysis to assess the
risk of bias induced by Adherence. In fact, because we have complete outcome data on
the non-adherers (unlike the participants who drop out), the risk of bias can be assessed
in more detail.

11.3. Instrumental Variables. Instrumental Variables (IV) analyses are a family of tech-
niques that use a combination of graphical properties and additional parametric assump-
tions to either identify, or bound, the causal effect of Treatment on Outcome. The graph-
ical structure assumed by IV methods is represented by Figure 13. Here, Allocation serves
as an instrument. To qualify as an instrument, Allocation must affect Outcome only

Allocation Treatmentα Outcome
β

U

Figure 13. IV methods assume a randomised, double-blind trial with non-adherence
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through Treatment, not directly – so IV methods must assume a blinded trial, to exclude
direct effects of Allocation via reporting biases and differential treatment. Also, there must
be no common cause of Allocation and Outcome (which is guaranteed by randomization).
IV methods, like ITT and per protocol, also assume no bias induced by Dropout.

The IV approach essentially uses the fact that the effects of Allocation on Treatment,
and of Allocation on Outcome, are unconfounded; the effect of Treatment on Outcome
should then be calculable from those two effects. Unfortunately, unlike in the case of the
Front Door technique (see Section 9.2), to identify the causal effect using instrumental
variables we also need to make some parametric assumptions. Hernàn and Robins (2006)
demonstrate that it suffices to assume a linear or log-linear model, or a ‘monotonic’ model,
where monotonic in this case means that Treatment is a monotonic function of Allocation.
In other words, if you would take the treatment given you’d been assigned to placebo, then
you would also take the treatment if you were assigned to treatment. However, none of
these parametric assumptions are testable from the data, and all three produce different
estimates of the treatment effect, so it may be unclear which to use (if any). [21]

In a linear model, the IV method aims to estimate the linear coefficient β (see Fig-
ure 13). Because the effect of Allocation on Treatment is unconfounded, the coeffi-
cient α can be estimated using the observed covariance: Cov(Allocation, Treatment) =
αV ar(Allocation). Likewise, the effect of Allocation on outcome can be estimated as,
Cov(Allocation, Outcome) = αβV ar(Allocation). Then the IV estimator is just the ratio
of the two effects:

β =
Cov(Allocation, Outcome)

Cov(Allocation, Treatment)

=
E[Outcome|Allocation = 1]− E[Outcome|Allocation = 0]

E[Treatment|Allocation = 1]− E[Treatment|Allocation = 0]

Where the second equality holds because Allocation is binary. Note, however, that when
the denominator of the fraction is small – as in the case where adherence is very low – the
estimator will be very high variance, and if Allocation is not a valid instrument (as in an
unblinded trial) the bias introduced will be magnified.

11.3.1. Bounding the Average Causal Effect using finite response variables. Pearl extends
IV methods to compute nonparametric bounds on the Average Causal Effect (ACE) of
Treatment on Outcome. [37, pages 262–9]

The technique relies on dichotomizing adherence and outcome, and then taking advan-
tage of the limited number of possible ways that the unobserved variable U could influence
adherence and outcome. Say we assume the graph in Figure 14. We would ideally like to
condition on U , but unfortunately U is unobserved.

So instead, we posit two extra unobserved variables, RT and RO, shown in Figure 15.
These don’t have a mechanistic interpretation; they are just a mathematical fiction we
use to represent all possible combinations of ways that U could influence Treatment and
Outcome, respectively. Pearl calls them “finite response variables”.
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Allocation Treatment Outcome

U

Figure 14. The causal structure of a Trial with Non-Adherence

Allocation Treatment Outcome

RT RO

U

Figure 15. Showing finite response variables

Note that Treatment is binary, and it has one other binary parent, Allocation. Thus
there are only four possible effects thatRT could have on Treatment: (1) make Treatment =
0, regardless of the value of Allocation; (2) make Treatment = 1, regardless of the value
of Allocation; (3) if Allocation = 0, make Treatment = 0, and if Allocation = 1, make
Treatment = 1; and (4) if Allocation = 0, make Treatment = 1, and if Allocation = 1,
make Treatment = 0. These four “effects” of RT can be mapped to four states. The states
have an intuitive interpretation as a person’s tendency to adhere to medication, and have
been named ‘never-taker’, ‘always-taker’, ‘complier’ and ‘defier’, respectively. The proba-
bility that RT takes on one of these four values can be thought of as the probability that
an individual falls into each of these four categories of adherence behavior.21 Treatment
is then a deterministic function of Allocation and RT – for example, if Allocation = 1 and
RT = complier, then Treatment = 1, and so on.

The situation is analogous with RO and Outcome, because Outcome is also binary, and
has one other binary parent, Adherer. The effects of RO are then ‘never-improve’, ‘always-
improve’, ‘helped’ and ‘harmed’ by treatment. Outcome becomes a deterministic function
of Treatment and RO. Then the value of Outcome given we intervene on Treatment

21Note that because RT and RO are mathematical fictions, whether someone counts as (say) a ‘complier’
or a ‘defier’ can change from trial to trial, and should not be interpreted as an enduring trait. The value of
RT is a counterfactual statement that only holds for this particular trial.
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becomes:

P (Out = 1|do(Treat = 1)) = P (RO = helped) + P (RO = always improve)

P (Out = 1|do(Treat = 0)) = P (RO = hurt) + P (RO = always improve)

So the average causal effect of assigning Treatment to 1 instead of 0 is:

P (Out = 1|do(Treat = 1))− P (Out = 1|do(Treat = 0)) = P (RO = helped)− P (RO = hurt)

We can then express the probabilities of the observed variables as sums of the joint prob-
abilities of the unobserved RT and RO. For example:

P (Outcome = 1, T reatment = 0|Allocation = 1) =

P (RT = never taker,RO = hurt) + P (RT = never taker,RO = always recover)

+P (RT = defier,RO = hurt) + P (RT = defier,RO = always recover)

Likewise, the Average Causal Effect can be written out as a sum of the probabilities of
the unobserved RT and RO. Then to find upper and lower bounds on the effect, we
must first maximize this sum, and then minimize it, subject to the constraints. Every
expression of the observed probabilities as a function of the unobserved ones functions as
a constraint, as does the requirement that all probabilities sum to 1. Happily, these are
all linear constraints, so the maximization and minimization tasks can be solved by linear
programming. The problem is small enough that it can be solved analytically, producing
precise bounds on the average causal effect.

The finite response variable approach requires the same graphical structure as a para-
metric IV analysis, so it also assumes a blinded trial, with no direct effect of Allocation on
Outcome. The great strength of this approach is that it makes no parametric assumptions;
it requires only that all the observed variables be dichotomous.

However, although every continuous variable can be coarsened into a dichotomous one,
doing so does not always preserve the d-separation relationships satisfied by the original
variable. Coarsening can introduce measurement error. Because the finite response vari-
ables approach requires the d-separation relationships in Figure 15, the approach effectively
assumes that all of the information in Treatment and Outcome can be captured by bi-
nary variables. This may fail if, for example, we have an inverted U-shaped dose-response
relationship.

11.4. Similarities and differences in the causal assumptions of these methods.
Intent-to-treat, per protocol, parametric instrumental variables, and instrumental variables
with finite response variables all have one thing in common: they all have to assume the
trial was blinded. However, they don’t all need this assumption for the same reasons. In
particular, three structural consequences of blinding can be assumed independently of one
another:

(1) Assume there is no bias introduced through the directed path
Allocation→ Treatment→ Beliefs→ Outcomes, and

(2) Assume that if we condition on Adherence, there is no bias introduced through the
collider path Treatment→ Beliefs→ Adherence← U→ Outcome.
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(3) Assume that there is no bias induced by the selection variable Dropout, on the
path Treatment→ Beliefs→ Dropout← U→ Outcome.

Obviously (1), (2) and (3) will all be true in a blinded trial, but if the trial is unblinded,
the strength of the pathways matters. The bias introduced through the first path might
be relatively weak while the second path was relatively strong, making (1) a reasonable
assumption while (2) was not.

In fact, intention To Treat (ITT), Instrumental Variable (IV), and Average Causal Effect
(ACE) analyses all require assumptions (1) and (3), but they do not require (2) because
they don’t involve conditioning on Adherence. Per protocol analyses require (1), (2) and
(3), so they make strictly stronger causal assumptions. The FDA’s and the Cochrane
Collaboration’s preference for ITT over per protocol analyses might be justified if they
thought that assumption (1) and (3) were plausible, but (2) was not. However, (3) is
structurally similar to (2), and (2) can be assessed in at least as much detail as (3) because
we have data for the non-adherent participants, but not those who drop out. There will
certainly be cases where, in a particular trial, the strength of the causal pathways makes
(3) plausible but (2) implausible. However, there may equally well be cases where the
reverse is true.

In addition to these causal assumptions, IV methods make parametric assumptions: they
require linearity, or log-linearity, or monotonicity. When using finite response variables, it is
possible to drop the parametric constraints, at the cost of assuming that we can dichotomize
Treatment and Outcome without introducing measurement error. In the next section I
will discuss relaxing the assumption of no measurement error, particularly for front-door,
instrumental variable, and per protocol analyses.

Part 4. Measurement error

In all of the previous analyses, we assumed that we had measured all variables perfectly.
By “measured perfectly” I mean we (a) captured the exact value of the variables, rather
than some noisy approximation to those values, and (b) captured all the relevant infor-
mation in each of the variables. There are several situations in which we might think our
measurement gives us true values, but does not capture all the information. For example,
we might be sampling a time-varying phenomenon, like blood glucose, at a slow rate –
say once a month. Variations in blood glucose will occur continuously; massive (but brief)
spikes in glucose could trigger a diabetic coma. But because we only measure once a month,
we might not see the spike, even though we see the coma. Alternatively, we might take a

Diet Blood Glucose

BGMonthly

Coma

Figure 16. Sparse sampling of Blood Glucose
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rough-grained partition of some variable when we really need a finer-grained partition. For
example, we might dichotomise adherence into “good” and “poor”, when in fact the precise
number of doses taken, or the variation in dose timing, is relevant to, say, viral resistance.
(Note that because Treatment is a deterministic function of Adherence and Allocation,
this would also give us a binary measure of Treatment.) Furthermore, our variable might

Allocation Treatment

TreatmentBinary

Outcome

U

Figure 17. A rough-grained partition of Treatment

not be what we are actually interested in. In the osteoporosis example, we measure Bone
Density as a surrogate for Bone Strength. Not only does this introduce noise, it can also
be misleading; for example, if calcium and magnesium are deposited in the outer sheath
of the femur far more than the lattice of bone within, the bone can become very dense
but also very brittle. Lastly, there may be simple noise in our measuring instruments. All

Treatment Bone Strength Fractures

U

Bone Density

Figure 18. Bone Density as a surrogate for Bone Strength

these kinds of imperfect measurement can be called “measurement error”, and clearly they
occur very, very frequently.

All kinds of measurement error have a common graphical representation. The variable
of interest is unobserved (shown circled in the graph) and we observe its child instead. It’s
clear from the representation that measurement error can cause huge problems for analyses
that rely on d-separation relationships. If the error-prone variable is in the conditioning set,
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then we are not conditioning on it, but instead on its child, which is off the path of interest.
For example, in the osteoporosis example, I would like to condition on the mediating
variable, Bone Strength, to use the Front Door criterion. Unfortunately, conditioning
on the measured variable, Bone Density, leaves open a direct path from Treatment to
Fractures through Bone Strength. There’s nothing I can do to block this path, so the
Front Door Criterion simply won’t work. There is no clever trick of conditioning that will
save our analysis.

12. Linear models

However, if we assume the model is linear, we can do much more. Linearity is a para-
metric assumption; it says nothing about the causal structure of the graph, but puts strong
constraints on the functional relationships between variables. A model is linear if every
variable is a linear function of its parents (i.e. for any variable X, and its set of parents
P1...Pn, X =

∑
i aiPi + εX , where the ai are real-valued coefficients and εX is a noise term

independent of all the other variables.
Linearity is a very powerful assumption. It implies that for any unit change in the P1,

the value of X changes by some constant amount, a1, regardless of the starting value of
X. It implies that there is no interaction between the parents of X; they all influence X
independently of each other. Linear models are very mathematically convenient, but in
many cases strict linearity will be implausible.

However, often similar but weaker assumptions, like monotonicity, are plausible in a
medical setting. If we know enough about the biochemical mechanisms in play, or if we
have seen the results of a dose-response study, we might feel comfortable assuming that the
treatment either increases bone strength or makes no difference, depending on the dose,
but there is no dose at which it decreases bone strength. In these cases, we may perform
simulation studies to see how far our results could go wrong if we assume a linear model
when in fact the generating process is monotonic but not linear.22 Monotonic models do
not have the same nice theoretical properties as linear ones but in a host of real cases they
may give similar results. Thus, it is worth looking at the properties of linear models even
if we think linearity is implausible.

12.1. The Trek Rule. Linear models are useful because they give us the Trek Rule. [47]
The Trek Rule relates the linear coefficients of the edges in the graph to the covariance
matrix of the variables, so we can learn about those edge coefficients from the covariances.

Definition 2: A trek is a path between two variables, X and Y , with the
following features:
(1) There is a source node, Z, in the path (X, Y , or some variable in

between them may be the source node).
(2) Every edge between X and Z is directed towards X
(3) Every edge between Z and Y is directed towards Y

22A good direction for future research.
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So a directed path counts as a trek, and so does a path between two descendants through
their common ancestor. Intuitively a trek has two “sides” – one from X to Z, one from Z
to Y – and in the case of a directed path, one side of the trek is empty.

Definition 3: Trek coefficient, a.k.a. trek product. In a linear model, for a
given trek T, its trek coefficient is the product of all the coefficients of the
edges on the trek, multiplied by the variance of the source of the trek.

Note that if the model has been standardised, so that all variables have mean zero and
variance one, then the trek coefficient is just the product of the edge coefficients.

Definition 4: The Trek Rule: In a linear model, the covariance between
two variablesX and Y is the sum of the trek coefficients for all treks between
X and Y .

12.2. Applying the Trek Rule to the Front Door with measurement error. So say
we have the following graph shown in Figure 19, where the model is linear and all variables
have been standardised. This is the same as the Front Door case with measurement error

X Zα Y
β

U

δ

θ

M

γ

Figure 19. Front Door graph with measurement error of the mediating variable

of the mediating variable; I have just renamed the variables to keep the equations concise.
So we want to learn the trek product αβ, as this corresponds to the effect of Treatment on
Outcome. Using the trek rule, we can write down the following formulae for the observed
covariances:

Cov(X,Y ) = αβ + δθ

Cov(X,M) = αγ

Cov(Y,M) = βγ + γαδθ

Even though δθ can be treated as one parameter (because they always occur together),
we still have far more unknowns than equations. We cannot express αβ in terms of the
observed covariances, so there’s no way to identify the effect we’re interested in from the
covariance matrix.23

23In this section I am determining whether an effect is identifiable by writing out the constraints and
then, if the effect is identifiable, doing algebra by hand to show how it is identified. For a general algorithm
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However, if we had not one, but two different measurements of the mediating variable,
as shown in Figure 20, the situation would be more hopeful. We would have three more

X Zα Y
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γ
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Figure 20. Front Door graph with two measurements of the mediating variable

observed covariances, giving us the following set of constraints:

Cov(X,Y ) = αβ + δθ

Cov(X,M) = αγ

Cov(Y,M) = βγ + γαδθ

Cov(X,N) = αλ

Cov(Y,N) = βλ+ λαδθ

Cov(M,N) = γλ

Using Cov(X,M), Cov(X,N) and Cov(M,N) we can identify the magnitude (though not
the sign) of α, γ and λ, like so:

|α| =

√
Cov(X,M)Cov(X,N)

Cov(M,N)
=

√
αγαλ

γλ

|γ| =

√
Cov(X,M)Cov(M,N)

Cov(X,N)
=

√
αγγλ

αλ

|λ| =

√
Cov(X,N)Cov(M,N)

Cov(X,M)
=

√
αλγλ

αγ

for assessing identifiability, see [12]. Unfortunately Meek & Geiger’s (1999) algorithm is not practical for
even moderately-sized graphs.

41



Elizabeth Silver Clinical trials with non-adherence & unblinding

Then we have:

Cov(X,Y )Cov(X,M) = α2βγ + γαδθ

Cov(X,Y )Cov(X,M)− Cov(Y,M) = α2βγ − βγ
Cov(X,Y )Cov(X,M)− Cov(Y,M)√

Cov(X,M)Cov(M,N)
Cov(X,N)

= ± α2β − β

= ± β(α2 − 1)

Cov(X,Y )Cov(X,M)− Cov(Y,M)√
Cov(X,M)Cov(M,N)

Cov(X,N)

(
Cov(X,M)Cov(X,N)

Cov(M,N) − 1
) = ± β

Thus, using only the observed covariances, we can identify both α and β up to the sign.
Luckily, in medical contexts we have the intention-to-treat effect as well, which should tell
us the sign of αβ.

The expression above is a very complicated function of several small numbers, each of
which has its own estimation error, so it seems likely to be a very poor estimator. Note
that we have two estimators for β – if we switch M with N in the expression above, we
get a second estimator, so we could compare the estimates or take the average of the two.
However, these estimators are not independent, and both are likely to have high variance.
A good direction for future research would be to conduct simulation studies to explore the
variability of these estimators (if analytic results are unavailable). My goal has been simply
to show that unbiased estimation is possible; that the effect of interest can be identified,
despite measurement error, if we assume a linear model.

12.3. We cannot assume linearity for per protocol analyses. Our motivation for
exploring linear models was originally that measurement error destroys the d-separation
relationships we rely on. Per protocol analyses also rely on d-separation relationships; they
rely on Adherence screening off the back-door path through U. So the natural next step
is to ask: can linear models let us estimate the effect of Treatment on Outcome if the
error-prone variable is Adherence, and we are attempting a per protocol analysis?

Unfortunately this move is forbidden by the deterministic relationships in the graph.
The observed value of Treatment is defined as the minimum of its two parents Allocation
and the observed value of Adherence (assuming Adherence ranges from zero to one),
so if there is measurement error in Adherence there will also be measurement error in
Treatment. Thus, the graph will look different from normal representations of measure-
ment error. TreatmentMeasured cannot be a child of the unobserved true value Treatment,
because it is completely determined by Allocation and AdherenceMeasured. Say Figure 21
represents the graph we’d get with perfect measurement – so the trial is perfectly blinded,
but there is some non-adherence, and a back-door path from Adherence to Outcomes
through unmeasured U. Then Figure 22 represents the situation with measurement error
of Adherence. Because Allocation and AdherenceM interact to determine the value of
TreatmentM , we cannot assume a linear model. Some parts of if may be linear, but the
AdherenceM → TreatmentM and Allocation → TreatmentM edges are not, and those
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Allocation Treatment Outcome

U

Adherence

Figure 21. Without measurement error

Allocation Treatment Outcomeα

U

AdherenceAdherenceM

TreatmentM

Figure 22. With measurement error of Adherence

edges are unavoidable if we are trying to calculate α (the Treatment → Outcome edge
coefficient). Thus, we cannot take advantage of the Trek Rule to do a Per Protocol analysis
if there is measurement error in Adherence.

Measurement error of Adherence is unbelievably common. Pill counts are often the only
measure of adherence used in a trial, even though it has been shown that they overestimate
adherence; furthermore, they do not capture all the causally relevant information in adher-
ence behaviour, because they do not measure dose timing. [31] Likewise, measures of serum
levels of drug overestimate adherence because of infrequent measurement and white-coat
effects, and give very limited information about dose timing. [3] Self-report measures are
only useful for those few patients who report non-adherence.

Electronic monitors are leagues ahead of all the other methods, although they have
a slight tendency to underestimate adherence, thanks to some pocket-dosing behaviour.
Data from electronic monitors has been used to model the serum concentration of drugs,
indicating that they might be capable of capturing the causally relevant features of adher-
ence. [39] Combined measures of adherence, using electronic monitors as well as some of
the other methods, perform the best at predicting medical outcomes. [31] It is possible to
measure adherence well; but it is rarely done.

Unless we have good measurement of adherence, a per protocol analysis will be biased
by the confounding pathway through U. A good direction for future research would be to
attempt to quantify the degree of the bias, and see whether data from electronic monitors,
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or perhaps a combined measure of adherence, can come close to eliminating the bias. If
they can, electronic monitors should be used in every trial that will be analyzed by per
protocol.

12.4. Instrumental Variables. It’s trivial to show that we can identify the Treatment
Effect using Instrumental Variables despite measurement error, provided the model is linear
, and we have two different measures of Treatment.

Z X
β

M

γ

N

λ

Yα

U

δ

θ

Figure 23. Instrumental Variables with measurement error, assuming a
linear model

Figure 23 represents the causal structure, which give us the following constraints (among
others):

Cov(Z,M) = βγ

Cov(Z,N) = βλ

Cov(Z, Y ) = βα

Cov(M,N) = γλ

Thus we have:

Cov(Z, Y )
√
Cov(M,N)√

Cov(Z,M)Cov(Z,N)
=
βα
√
γλ√

β2γλ
= ± α

We don’t even need to use Cov(Y,M) or Cov(Y,N). Again, although we cannot identify the
sign of α, the intention-to-treat estimate should do that for us. However, it is crucial that
we have two measurements of X (which represents Treatment here). If we had measure
M but not N , we would not be able to identify α.

Part 5. Conclusion

13. Summary and recommendations

The FDA and the Cochrane Collaboration prefer ITT over per protocol analyses. In
other words, they care more about excluding Adherence-induced bias than they care about
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learning the Treatment Effect (in addition to the Allocation Effect). This demonstrates
a degree of skepticism and caution towards adherence bias that is far higher than that
directed toward bias induced by Dropout, and differential treatment and reporting biases.
The FDA and the Cochrane Collaboration’s preference holds even if there is no quantitative
evidence, in a given trial, that bias induced by conditioning on Adherence will be larger
than these other sources of bias. What makes Adherence bias different is that we can avoid
dealing with it, because we can avoid conditioning on Adherence, whereas we are forced
to condition on Dropout and we cannot fully prevent unblinding.

In any trial with substantial non-adherence, the Allocation Effect will be driven to-
wards the null, even if the Treatment Effect is strong. In the case of the Women’s Health
Initiative trial of calcium and vitamin D, the ITT result emphasized in the abstract was
non-significant, even though the subgroup analyses showed a statistically and clinically sig-
nificant effect of treatment. The standard preference for ITT results led to overemphasis
on the Allocation Effect – despite the fact that the Allocation Effect in the WHI may be
very far from the allocation effect in clinical practice, given the high levels of vitamin D
and calcium intake within the trial sample. The study authors considered the Treatment
Effect, as measured by per protocol analysis, to be more relevant to clinical practice. If
we always let concerns about Adherence bias trump concerns about relevance, regardless
of whether the risk of bias were high or low, we would recommend that women not bother
taking calcium and vitamin D. This would be a mistake.

I have argued that the FDA and the Cochrane Collaboration’s preference stems partly
from the misinterpretation of a historic trial, the Coronary Drug Project (CDP). This
trial is cited in the Cochrane Collaboration’s handbook in support of their preference for
ITT over per protocol analyses; it was also cited by Russell Katz, spokesperson for the
FDA, when he explained the FDA’s preference for ITT. The CDP demonstrated a strong
association between Adherence and Outcome, but did not demonstrate that Allocation
had any effect on Adherence; in fact, evidence from the trial seems to suggest the opposite.
The CDP research group argued that this edge was possible in principle (because Allocation
precedes Adherence in time). They looked at the strong association between Adherence
and Outcomes produced by the Adherence← U→ Outcomes pathway, and inferred that
there might be large bias introduced through Allocation→ Adherence← U→ Outcomes
if they conditioned on Adherence. I believe the data from the CDP demonstrate that
there was no such bias, and that it would be more productive to check for the presence
of bias rather than ruling out per protocol analyses a priori. I also believe that the lack
of graphical representations of the problem allowed the two pathways to be conflated; the
graphical representations I develop in Part 2 should allow for clearer thinking about the
sources of bias in clinical trials.

Given the graphical representations of clinical trials, it is clear that we can take several
different approaches to measuring and mitigating bias when we estimate the treatment
effect. Firstly, we can try to block the pathways that cause bias by measuring variables
that are likely to be on those pathways. There are several candidates for members of U.
We could also measure a Mediator variable between Treatment and Outcome, and use it

45



Elizabeth Silver Clinical trials with non-adherence & unblinding

to perform a front door analysis, in which case we would not need to assume blinding at
all.

Secondly, we can assess the degree of unblinding by measuring Beliefs directly. If
for some reason we cannot measure Beliefs, we can use relationships among the mea-
sured variables to assess the likelihood of unblinding. In a blinded trial, we would expect
Allocation to be independent of Beliefs, Adherence, Dropout, Adverse effects, and any
Outcome that is apparent to the participant. In cases like the CDP’s trial of clofibrate,
where all evidence points to the blind holding, we should allow per protocol analyses.

If Allocation does appear to affect Adherence but the assumptions of an Instrumen-
tal Variables (IV) analysis hold, then we can use instrumental variables to estimate the
treatment effect. IV assumptions require that there be no direct effect of Allocation on
Outcome, and they require one of several possible parametric assumptions: either the
model should be linear, or log-linear, or monotonic, or else the d-separation relationships
among the variables should hold when Treatment and Outcome are made binary.

Lastly, I show that when measurement error is suspected, we can still identify the effect
of treatment using the front door method, so long as we can assume linearity, and we have
made two measurements of the Mediator variable. If there is measurement error in the
measurement of Adherence, an instrumental variables analysis can identify the effect using
two measures of Adherence and assuming linearity. However, the assumption of linearity
is inappropriate for per protocol analyses, because of the non-linear relationship between
Treatment and its parents, Allocation and Adherence. For this reason, if researchers wish
to perform a per protocol analysis, it is crucial that they measure adherence as well as
possible, which means using electronic monitors.

In sum, there is no reason to give up on measuring the Treatment Effect. It need not
always take second place to the Allocation Effect, as measured by an ITT analysis. There
are many ways to measure and mitigate the bias introduced in analyses of the treatment
effect; some decisions can be made at the analysis stage, but several steps must be taken
when the trial is designed, such as using electronic monitors rather than pill counts to
measure adherence. The one step I recommend most highly it is to measure participants’
and assessors’ Beliefs about allocation. Unblinding is the source of all our analytic woes,
so we should learn whether it occurred or not.

14. Further research

14.1. Simulation studies. It would be extremely helpful to perform simulation studies of
all these different analytic techniques, to see how biased they are under different plausible
assumptions about the strength of the confounding pathways. It would also be helpful to
see simulations of the estimators I propose for in the measurement error section. Although
they are unbiased, they are likely to have very high variance, and it would be worthwhile
to check whether the estimates they produce are worse than the biased estimates produced
by the unadjusted method.
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14.2. Vested interests. One of the implicit assumptions I make throughout this thesis is
that every epistemic agent is acting in good faith. If the treatment is ineffective (or danger-
ous), we all want to learn that it is ineffective (or dangerous). In the field of pharmaceutical
trials this assumption is laughably false. Many if not most of the researchers have vested
interests in the results of their experiments. The pharmaceutical industry’s power over the
FDA [1, pages 208–14] makes thorough regulation impossible, but the agency still battles
to prevent regulatory mistakes. In this climate inference is not a game against nature or
stochasticity; it is instead an adversarial process, and in that sense is more akin to legal
than scientific inference.

ITT analyses have been praised for being “conservative” [30]24 – i.e. they make it harder
to demonstrate treatment efficacy – on the grounds that approving an ineffective drug has
worse consequences than missing an effective one. But the relative utility of the two options
is never properly calculated and compared. I believe the preference for “conservative” (read:
biased in a particular direction) analyses stems from the adversarial climate in medical
research. As a result, purely statistical considerations do not capture the constraints on
inference, and this area would benefit from the expertise of legal epistemologists.
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