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Introduction
Goal: learn Genetic Regulatory Network (GRN) from observational data,
using transfer learning

• Causal network discovery methods applied successfully to learn GRN,[1]
using a compendium of gene expression profiles for yeast [2]

• However: For most species, little public data exists
• Idea: leverage information from related species

Difficulties:

• General problems for GRN discovery:

– High dimension: e.g. 4,300 genes in E. coli
– Causal system includes feedback cycles, unobserved confounders, non-linear

mechanisms, non-Gaussian distributions
– Background knowledge is unreliable
– Gold standard incomplete: we do not know the whole GRN for any species

• Adapting high-dimensional discovery algorithm for transfer learning

– Other transfer learning method for GRNs [3] only covers a small # of genes

Data
M3D Many Microbes Microarrays Database (M3D) [4]: manually curated, uniformly

normalized, whole-genome microarray data on E. coli and S. oneidensis

RegulonDB Regulon Database (RegulonDB) [5]: Expert-curated database of known
regulatory relationships in E. coli

Strategy: Learn GRN of E. coli using data from both E. coli and
S. oneidensis; evaluate using RegulonDB.

Data Preprocessing:

• Excluded data from gene manipulation experiments (knockouts, over-expression,
plasmids, etc.) as these alter the causal network

• Excluded auto-regulatory relationships from RegulonDB as these are undetectable
by causal network discovery algorithms

• OMA Browser provided list of homologous genes between E. coli and S. oneidensis

Method: Two rounds of greedy search
• Greedy Equivalence Search (GES) [6]

– Score-based search (score is usually Bayesian Information Criterion)
– GES starts from an empty graph, has two search phases:

1. Add edges that improve score, until score stays constant; then
2. Delete edges that improve score, until score stays constant; end.

– Asymptotically consistent, but with small n, can get stuck in local optima

• Transfer Learning Idea (based on [7]): run GES on pooled data, then use this
graph as a starting point for 2nd round of GES on target species data

• Large sample size in first round may help GES get close to global optima. Unbiased
data in second round may help GES reach the optimum.
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Evaluation
• Several searches performed:

1. G1 (single species search): 1-round GES on all of the E. coli data, regard-
less of strain (n = 424, p = 4297)

2. G2 (two-species search): 1-round GES on pooled data from E. coli & S.
oneidensis (excluding non-homologous genes) (n = 635, p = 1672)

3. G3 (cross-species transfer): Starting from G2, 2nd round of GES on only
E. coli data (n = 424, p = 4297)

4. G4 (cross-strain transfer): Starting from G1, 2nd round of GES on only
E. coli MG1655 strain data (n = 239, p = 4297)

• Also compared with absolute marginal correlation, and random guessing
• Each output graph compared against RegulonDB in terms of adjacencies
• If # of nodes = p = 4,297, then # of possible adjacencies =

(
p
2

)
= 9,229,956

• RegulonDB only has 4,106 edges and is likely to be very incomplete

– Only 2,345 edges supported by strong evidence
– A “false positive” could be a true-but-unknown edge

• Best outcome measure is “Number Needed to Test” (NNT): expected # of
experiments performed to discover one new transcriptional regulator

Results
RegulonDB: all 4,106 edges # Edges TPR FPR TDR NNT

Guessing (95% quantile)a 20,263 0.341% 0.219% 0.0691% 1447
Marginal correlationb 20,263 2.06% 0.219% 0.415% 241
1-round GES (all E coli) 20,263 2.72% 0.218% 0.548% 183
1-round GES (E. coli + S. on.) 8,988 0.930% 0.0970% 0.423% 237
2-round GES (E. coli + S. on. → E. coli) 19,624 2.72% 0.212% 0.566% 177
2-round GES (E. coli → E. coli MG1655) 17,029 2.50% 0.183% 0.599% 167

Table 1: Adjacencies compared to RegulonDB (all edges)

RegulonDB: 2,345 strong edges # Edges TPR FPR TDR NNT

Guessing (95% quantile) 20,263 0.384% 0.219% 0.0444% 2251
Marginal correlation 20,263 2.57% 0.219% 0.296% 338
1-round GES (all E coli) 20,263 3.56% 0.219% 0.410% 244
1-round GES (E. coli + S. on.) 8,988 1.33% 0.0971% 0.345% 290
2-round GES (E. coli + S. on. → E. coli) 19,624 3.52% 0.212% 0.418% 239
2-round GES (E. coli → E. coli MG1655) 17,029 3.30% 0.184% 0.452% 221

Table 2: Adjacencies compared to RegulonDB (edges with strong evidence)

aChoosing 20,263 edges at random, the # of true positives is distributed hypergeometrically
bAssuming same density as graph produced by 1-round GES

Conclusion
• Transfer learning makes very little difference when pooling across species

But transfer learning across strains within a species helps somewhat

• GES does little better than marginal correlation (using GES, researcher must
perform 76% as many experiments as when using marginal correlation).

Planned extensions

• Simulation studies (eliminate weird data)
• Incorporate background knowledge into search

– Faith et al. [8] only allowed edges out of genes known to be Transcription
Factors

– Many methods restrict search to a small subset of genes
– Use computational predictions to feed GES a structured prior

• Use more closely related species &/or more homogenous data

– Need another convenient database like M3D

• Tweak edge-deleting phase of GES so it is more aggressive
(to get sparser graphs in 2nd phase)

Note: The original version of this poster contained errors in the data analysis, which altered the results
slightly. This version has been corrected.


