Cross-Species Transfer Learning of Genetic Regulatory Networks

Elizabeth Silver Carnegie Mellon University Department of Philosophy silver@cmu.edu

Introduction

Goal: learn Genetic Regulatory Network (GRN) from observational data, using transfer learning

- Causal network discovery methods applied successfully to learn GRN,[1] using a compendium of gene expression profiles for yeast [2]
- However: For most species, little public data exists
- Idea: leverage information from *related species*

Difficulties:

• General problems for GRN discovery:

Evaluation

- Several searches performed:
 - 1. G1 (single species search): 1-round GES on all of the *E. coli* data, regardless of strain (n = 424, p = 4297)
 - 2. G2 (two-species search): 1-round GES on pooled data from E. coli & S. oneidensis (excluding non-homologous genes) (n = 635, p = 1672)
 - 3. G3 (cross-species transfer): Starting from G2, 2nd round of GES on only E. coli data (n = 424, p = 4297)
 - 4. G4 (cross-strain transfer): Starting from G1, 2nd round of GES on only E. coli MG1655 strain data (n = 239, p = 4297)

- High dimension: e.g. 4,300 genes in *E. coli*
- Causal system includes feedback cycles, unobserved confounders, non-linear mechanisms, non-Gaussian distributions
- Background knowledge is unreliable
- Gold standard incomplete: we do not know the whole GRN for any species
- Adapting high-dimensional discovery algorithm for transfer learning
 - Other transfer learning method for GRNs [3] only covers a small # of genes
- Also compared with absolute marginal correlation, and random guessing
- Each output graph compared against RegulonDB in terms of adjacencies
- If # of nodes = p = 4,297, then # of possible adjacencies = $\binom{p}{2} = 9,229,956$
- RegulonDB only has 4,106 edges and is likely to be very incomplete
 - Only 2,345 edges supported by strong evidence
 - A "false positive" could be a true-but-unknown edge
- Best outcome measure is "Number Needed to Test" (NNT): expected # of experiments performed to discover one new transcriptional regulator

Data

M3D Many Microbes Microarrays Database (M3D) [4]: manually curated, uniformly normalized, whole-genome microarray data on E. coli and S. oneidensis

RegulonDB Regulon Database (RegulonDB) [5]: Expert-curated database of known regulatory relationships in *E. coli*

Strategy: Learn GRN of *E. coli* using data from both *E. coli* and S. oneidensis; evaluate using RegulonDB.

Results

RegulonDB: all 4,106 edges	$\# \mathbf{Edges}$	TPR	FPR	TDR	NNT
Guessing $(95\% \text{ quantile})^a$	20,263	0.341%	0.219%	0.0691%	1447
Marginal correlation ^{b}	20,263	2.06%	0.219%	0.415%	241
1-round GES (all $E \ coli$)	$20,\!263$	2.72%	0.218%	0.548%	183
1-round GES (E. $coli + S. on.$)	$8,\!988$	0.930%	0.0970%	0.423%	237
2-round GES (E. $coli + S. on. \rightarrow E. coli$)	$19,\!624$	2.72%	0.212%	0.566%	177
2-round GES (<i>E. coli</i> \rightarrow <i>E. coli</i> MG1655)	$17,\!029$	2.50%	0.183%	0.599%	167

Data Preprocessing:

- Excluded data from gene manipulation experiments (knockouts, over-expression, plasmids, etc.) as these alter the causal network
- Excluded auto-regulatory relationships from RegulonDB as these are undetectable by causal network discovery algorithms
- OMA Browser provided list of homologous genes between *E. coli* and *S. oneidensis*

Method: Two rounds of greedy search

- Greedy Equivalence Search (GES) [6]
 - Score-based search (score is usually Bayesian Information Criterion)
 - GES starts from an empty graph, has two search phases:
 - 1. Add edges that improve score, until score stays constant; then
 - 2. Delete edges that improve score, until score stays constant; end.
 - Asymptotically consistent, but with small n, can get stuck in local optimal
- Transfer Learning Idea (based on [7]): run GES on pooled data, then use this graph as a starting point for 2nd round of GES on target species data

Table 1: Adjacencies compared to RegulonDB (all edges)

RegulonDB: 2,345 strong edges	$\# \mathbf{Edges}$	\mathbf{TPR}	FPR	TDR	NNT
Guessing $(95\%$ quantile)	20,263	0.384%	0.219%	0.0444%	2251
Marginal correlation	20,263	2.57%	0.219%	0.296%	338
1-round GES (all $E \ coli$)	20,263	3.56%	0.219%	0.410%	244
1-round GES (E. $coli + S. on.$)	8,988	1.33%	0.0971%	0.345%	290
2-round GES (E. $coli + S. on. \rightarrow E. coli$)	$19,\!624$	3.52%	0.212%	0.418%	239
2-round GES (<i>E. coli</i> \rightarrow <i>E. coli</i> MG1655)	$17,\!029$	3.30%	0.184%	0.452%	221

Table 2: Adjacencies compared to RegulonDB (edges with strong evidence)

^aChoosing 20,263 edges at random, the # of true positives is distributed hypergeometrically ^bAssuming same density as graph produced by 1-round GES

Conclusion

- Transfer learning makes very little difference when pooling across species But transfer learning across *strains* within a species helps somewhat
- GES does little better than marginal correlation (using GES, researcher must perform 76% as many experiments as when using marginal correlation).

• Large sample size in first round may help GES get close to global optima. Unbiased data in second round may help GES reach the optimum.

References

- [1] Marloes H Maathuis, Diego Colombo, Markus Kalisch, and Peter Bühlmann. Predicting causal effects in large-scale systems from observational data. Nature Methods, 7(4):247-248, 2010.
- [2] Timothy R Hughes, Matthew J Marton, Allan R Jones, Christopher J Roberts, Roland Stoughton, Christopher D Armour, Holly A Bennett, Ernest Coffey, Hongyue Dai, Yudong D He, et al. Functional discovery via a compendium of expression profiles. Cell, 102(1):109-126, 2000.
- [3] Zaher Dawy, Elias Yaacoub, Marcel Nassar, Rami Abdallah, and Hady Ali Zeineddine. A multiorganism based method for bayesian gene network estimation. BioSystems, 103:425-434, 2011.
- Jeremiah J. Faith, Michael E. Driscoll, Vincent A. Fusaro, Elissa J. Cosgrove, Boris Hayete, Frank S. Juhn, Stephen J. Schneider, and Timothy S. Gardner. Many microbe microarrays database: uniformly normalized affymetrix compendia with structured experimental metadata. Nucleic Acids Research, 36(Database Issue):D866–D870, doi:10.1093/nar/gkm815 2008.
- [5] H Salgado et al. Regulondb (version 8.0): Omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Research, doi: 10.1093/nar/gks1201 PMID: 23203884 PMC: PMC3531196, November 2012.
- David Maxwell Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 6 3:507-554, 2002.
- Kathleen M. Gates and Peter C. M. Molenaar. Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63:310-319, 2012.
- [8] Jeremiah J. Faith, Boris Hayete, Joshua T. Thaden, Ilaria Mogno, Jamey Wierzbowski, Guillaume Cottarel, Simon Kasif, James J. Collins, and Timothy S. Gardner. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLOS Biology, 5(1):0054-0066, 2007.

Planned extensions

• Simulation studies (eliminate weird data) • Incorporate background knowledge into search

- Faith et al. 8 only allowed edges out of genes known to be Transcription Factors
- Many methods restrict search to a small subset of genes
- Use computational predictions to feed GES a structured prior
- Use more closely related species &/or more homogenous data
 - Need another convenient database like M3D
- Tweak edge-deleting phase of GES so it is more aggressive (to get sparser graphs in 2nd phase)

Note: The original version of this poster contained errors in the data analysis, which altered the results slightly. This version has been corrected.